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• Surface slope angle α inferred from swath profiles along seven sections of 
interest using a digital elevation model (ArcGIS Pro/ESRI)

• Angle of detachment β derived from published interpretations of 
respective seismic sections, deep wells and structural models of the 
Northern Limestone Alps (frontal part of the wedge after [4], section 7 
based on TRANSALP profile [5], structural models from [6, 7], deep well 
Vorderriss 1: [8])

• Interpolation of constructed cross sections and subsequent development 
of a 3D model of the basal detachment using SKUA (Paradigm) (compare 
[2])

• Angles α & β determined along the profiles in 3 km intervals. Angle 
measurement and detachment strength calculation was done 
automatically using a specially developed Python script [9]. 

Weak detachments below active thrust fronts of subaerial orogenic wedges are 
mostly controlled by wedge taper geometry. A common method to investigate 
wedge properties is critical taper analysis. According to critical taper theory 
fault strength in a mechanically homogeneous wedge can be constrained from 
surface slope angle α and the angle of inclination of the basal detachment β 
[1]. However, the influence of fluid overpressure on fault strength is often 
underestimated. Here, we present a simplified 3D wedge taper model of the 
North Alpine Thrust Wedge (SE Germany) between Lake Constance and the Inn 
Valley which is used for critical taper analysis. Different scenarios with varying 
input parameters are considered, with special emphasis on fluid overpressure 
ratios.

Methodology

Fig. 1: Simplified critical taper model of a subaerial thrust wedge [modified from 3]. Dimensionless 
detachment strength F is a function of surface angle α, dip of detachment β and a dimensionless factor W 
(1), which describes the internal wedge strength (usually ± 1, see [3]). In case the wedge is at least partly 
overpressured, total height of the overpressured section needs to be taken into account (2)[3].
Z  = fluid retention depth, µ  = fault friction, k  = internal friction (compression). Taper angles are given in FRD f C

radians.

Fig. 2a: Shaded relief map of the study area with locations of cross sections and wellbores used for 
interpolation of the basal detachment. Sections 1 to 6 are based on [4], data on section 7 is taken from 
[4] and [5].

Fig. 3a: 3D model of the study area. The basal detachment is interpolated from 
seven cross sections and one borehole, according swath profiles are based on LIDAR 
data. Colors indicate elevation and depth, respectively.

Fig. 3b: The study area can be divided into a western and an eastern part, respectively. 
Based on published data on pore fluid overpressure in the thrust wedge [10] the western 
part is assumed to be locally overpressured, whereas in the eastern part evidence for 
significant overpressure is missing. Black lines represent major fault systems.

Fig. 3c: Interpolated detachment shear strength for scenario 7. According to our 
results shear strength increases towrads the eastern part even when sigificant fluid 
overpressure is assumed. 

Fig. 3d: Spatial distribution of detachment strength F (scenario 7) with comparatively 
high pore fluid overpressure (see Tab. 1 for values). 

Fig. 4: Comparison of critical shear strength (left) and detachment strength F (right) for cross section 7 with respect to 
hydrostatic (λ = 0.4) and overpressured (λ = 0.9) conditions. X-axis shows data points along cross sections. Note how fluid 
overpressure impacts especially where detachment geometry is changing abruptly.

• Fluid pressure: Significant impact on detachment strength → F locally reduced by 
ca. 60% (λ 0.4 ↔ 0.8)

• Geometry: Especially faults that cause local steepening in the basal detachment 
result in a drastic increase in fault strength (e.g. Inntal Fault / section 7)

• Western part: Depth of basal detachment roughly coincides with seismogenic zone 
[13]. Overpressure in this area likely close to lithostatic conditions [see 10]

• Eastern part: Fault development (→ Inntal Fault) likely responsible for (a) reduced 
thrusting and associated uplift in the Mangfall Mountain area and (b) simultaneous 
uplift and exhumation of the Tauern Window complex along the Tauern ramp 
[compare 11,12]
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Open questions and Outlook

• Slab theory:  Influence of slab break-off on geometry of the detachment and wedge 
evolution [see 12]?

• Role of fault zones and overpressure cells within wedge → wedge strength may be 
locally reduced

• Refine model of the basal detachment in order to better understand role of 
geometry

• Sensitivity analysis: Compare impact of geometry vs. pore fluid pressure on 
detachment strength

•  Various scenarios on fluid pressure 
distribution within the detachment 
and the frontal wedge are considered 
for fault strength calculation. 

• Data on measured overpressure and 
fluid retention depth (z ) in the FRD

frontal part of the wedge are taken 
from [10].

Fig. 2b: Cross section 2 exemplifies fluid overpressure distribution within the western part of the North 
Alpine Thrust Wedge (from [10]). Overpressured cells can be observed within the Subalpine Molasse 
and Alpine nappes. The Foreland Molasse, however, is hydrostatically pressured in this area.
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Tab. 1: Compiled fluid pressure properties used for critical taper 
analysis.
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