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A B S T R A C T   

Urbanization induced changes have attracted widespread attention. Key challenges arise from the inherent 
uncertainties in attribution models diagnosing the driving mechanisms and the interrelationships of the attri-
butes given by the complexity of interactions within a city. Here, we investigate urbanization dynamics from 
nighttime light signals before analyzing their driving mechanisms from 2014 to 2020 on both provincial and 
regional scale and a flat versus mountainous urbanization comparison. Model uncertainties are discussed 
comparing the contribution results from Geodetector and the Gini importance from Random Forest analyses. The 
method is applied to Shaanxi Province, where flat urban land is located mainly in its center and mountainous 
urban land is situated in the North and South. The following results are noted: i) Employing the Geodetector 
based maximum contribution method for urban region extraction of night time light reveals a notable accuracy 
improvement in flat urban land compared with the closest area method. ii) Geographical factors attain high 
contribution for mountainous urban land of Shannan, while for flat urbanization land dynamics, economic 
factors and community factors prevail. iii) The most obvious driving mechanisms are economic factors which, 
associated with local urban development strategies, show highest contribution values in 2014 (2018) over the 
flat (mountainous) urban land of Guanzhong Plain (Northern Shaanxi Plateau or Shanbei region) linked with an 
early (late) development. iv) Population factors achieve high contribution values in the initially low populated 
urban land of the northern mountainous land initiating huge migration. v) The contributions resulting from 
Geodetector are in agreement with the Gini importance from Random Forest in agriculture, geographical and 
population factors (R2 > 0.5) but not in economy, community and climatic factors (R2 < 0.5). The dynamics of 
driving mechanisms for urbanization provides insights in connecting urban geographical expansion with multi- 
factors and thus to assist municipal governments and city stakeholders to design a city with geographical, cli-
matic and social-economic changes and interactions in mind.   

1. Introduction 

Urbanization refers to the population shift from rural to urban areas 
(Parnell and Walawege, 2011). The corresponding increase in the pro-
portion of people living in urban areas and increases in material de-
mands of production, human consumption and urban waste discharge 
have recently emerged as a sustainability challenge related to urban 
dynamics and associated with environmental consequences during the 
urbanization processes (Avtar et al., 2019; Chen et al., 2018). Research 

on urban dynamics includes urban expansion (Jiao, 2015; Li et al., 2018; 
Zhang et al., 2018b), population growth (Bongaarts, 2016; Qizhi et al., 
2016; Shang et al., 2018), economic growth (Ahmad et al., 2021; 
Bakirtas and Akpolat, 2018; Minh Ha and Nguyen, 2017), and electric 
power consumption (Bilgili et al., 2017; Sheng et al., 2017; Xie et al., 
2020). The associated environmental consequences refer to the urban-
ization/anthropogenic induced changes, including increased atmo-
spheric greenhouse gas concentration (Ahmed et al., 2019; Liu and Bae, 
2018; Wang et al., 2019b), urban heat island effect (Carmona et al., 
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2017; Fu and Weng, 2016; Zhou et al., 2019), extreme climate events 
(Lin et al., 2020; Wang et al., 2022; Zhang et al., 2018a), aerosol 
emissions (Jiang et al., 2017; Wang et al., 2021a; Xue et al., 2019), and 
land use and land cover change (Haregeweyn et al., 2012; Hou and Wen, 
2020; Ul Din and Mak, 2021). 

As a rapidly changing developing country with the largest population 
in the world, the urbanization rate in China has increased steadily over 
the last decades. Chinese urbanization commenced since mid-twentieth 
century (Liu et al., 2021), rose from 18% of the total population in China 
in 1970 s, to 36% in 2000, to around 51% in 2011, and up to approxi-
mately 60% till 2018 (Gaughan et al., 2016; Luo et al., 2018; Yu, 2021). 
The following direct changes in Chinese urbanization have been 
observed: i) Urban expansion has occurred over 95% of the Chinese 
cities from 1970 to 2010 (Wang et al., 2020). ii) Cropland reduction has 
increased from 47.29% in 2000 to 77.46% in 2015 (Chunyu et al., 
2019). iii) Gross domestic product has increased with an annually 
averaged rate of 9.5% from 1995 to 2012 (Zhao and Tang, 2018). And 
iv) the annual growth rate of energy consumption has increased from 
5.5% in 1990s to 9.6 % in 2000s (Zheng and Walsh, 2019) and reaching 
12% in the 2020s (Elheddad et al., 2020). All those observed changes in 
Chinese urbanization show negative influence on changing the urban 
surface climate, including greenhouse gas emissions (Feng et al., 2017; 
Wang and Li, 2018; Zhang et al., 2019b), temperature increase (Wang 
et al., 2021b; Wang et al., 2019a; Wang et al., 2021c), PM2.5 increase 
(Du et al., 2019; Lin et al., 2018; Wu et al., 2018), precipitation rise in 
the city core (Liu and Niyogi, 2019), etc.. 

Accordingly, a great number of studies analyze the driving factors of 
urbanization and the corresponding changes to guide a sustainable 
urban development in China. Mathematical methods such as regression 
or spatial regression models and machine learning are popular. Tradi-
tional studies related to the driving mechanisms of urbanization focus on 
the regression relationship between social economic factors and an ur-
banization indicator (Cai and Fangyuan, 2020; Guo et al., 2021). For 
example, Yang et al. (2019) analyze the driving mechanisms of 

urbanization by associating the real estate investment, per capita fiscal 
expenditure, and the urban–rural income ratio with the ratio of urban to 
total population. Recent research has shown advantages in using arti-
ficial intelligence and machine learning. For example, Wu et al. (2021) 
and Zhang et al. (2019a) identify driving factors for land use change 
using the random forest method. Ye et al. (2021) apply Principal 
Component Analysis and a stepwise regression to obtain the contribu-
tion from driving factors. 

However, regression models require the assumption that the proba-
bility distribution of the data and whether the function of independent 
variables is linear or nonlinear. While spatial regression models may 
suffer from multicollinearity problems (see (Gao et al., 2012)). Artificial 
intelligence (AI) and machine learning (ML) methods show advantages 
in performing complex tasks and making decisions based on deep data 
analysis. 

Here, a simple Geodetector method (Wang et al., 2016) and the 
machine learning (ML) methods of Random Forest (Breiman, 2001) are 
used. The Geodetector provides a geostatistical diagnostic of the 
observed spatial stratified heterogeneity and attributes the spatial 
stratified heterogeneity to selected impact factors and thereby detects 
whether the impact factor is more similar within strata than between 
strata. One of the advantages of the diagnostics is that the calculated 
attributions are without any linear assumption (Ju et al., 2016; Shen 
et al., 2015; Wang et al., 2016; Wang et al., 2010; Yang et al., 2016). 
Together with the Geodetector diagnostic, the interrelationship between 
multi-factors and the annual attribution dynamics from 2014 to 2020 
could be easily analyzed. Furthermore, Geodetector method based on 
driving mechanisms is compared with factor contributions from ma-
chine learning (ML) methods of Random Forest. 

Instead of using present urban land use products (MCD12Q1, (Liu 
et al., 2018)), which define urban land depending on physical discrep-
ancies by integrating the presence of human-made structures and ma-
terials. Remotely sensed nighttime light signals are chosen due to their 
potential to obtain more comprehensive characteristics relating to urban 

Fig. 1. Methodology flowchart.  
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dynamics and the associated environmental consequences during the 
urbanization processes (Ma et al., 2012). Present methods extracting 
urban land indices include i) area optimized thresholding by the closest 
area method (Liu et al., 2012; Small et al., 2005; Yu et al., 2021), ii) 
vegetation adjusted urban index (Li et al., 2016), and iii) supervised 
classification (Dou et al., 2017). The closest area method extracts the 
urban land by determining an optimal threshold when the urban land 
area from the nighttime light data is closest to the area of reference 
image. Vegetation adjusted urban index extracts the urban land by 
integrating the nighttime light and vegetation information to reduce the 
nighttime light saturation effect in urban cores and over-glowing effect. 
Supervised classification is based on the idea that a user can select 
sample pixels that are representative of urban land, and then direct the 
image processing software to categorize the nighttime light signals into 
urban land and non-urban land (see (Liu et al., 2019)). 

To understand the driving mechanisms of urbanization and the un-
certainties of the analysis, it is the first time that (i) Geodetector analysis 
is employed to obtain the urban region, and (ii) this in terms of night-
time lighted area selected by an intensity threshold which is given by the 
maximum contribution of the nighttime light data relative to the 
reference impervious (urban) surface distribution. And subsequently, 
both Geodetector (2014–2020) and Random Forest (2015) are used to 
attribute urban dynamics (2014–2020) to geographical, climatic and 
social-economic factors. Thus, a three-step spatial analysis (section 2) is 
designed: Step-1, temporally, nighttime light data is employed to 
quantify the long-term annual urban region, whose accuracy is tested 
with present land cover data. Step-2, spatially, Geodetector is applied to 
diagnose the non-linear statistical attribution dynamics of geographical, 
climatic and social-economic impact factors for all single years’ urban 

region. Step-3, the contribution result from Geodetector is compared 
with the Gini importance from Random Forest for better understanding 
the uncertainty and limitation of these two contribution models. This is 
followed by an application (section 3) to Shaanxi Province, China, and a 
subsequent discussion of the results (section 4), and finally concludes 
the analysis (section 5). 

2. Materials and methods 

Data and preprocessing: Nighttime light signals (2014–2020) 
derived from the Suomi National Polar-orbiting Partnership Visible 
Infrared Imaging Radiometer Suite (NPP/VIIRS) are selected for 
obtaining the urban region. The NPP/VIIRS nighttime light monthly 
composite from the NOAA/NGDC is available since 2012 (https://ngdc. 
noaa.gov/eog/index.html, accessed on 3 July 2020) with a spatial res-
olution of 15 arc-seconds (0.5 km*0.5 km). Multisource, multitemporal 
random forest (MSMT_RF) map 2015 (Zhang et al., 2020) with an 
overall accuracy of 95.1% and a spatial resolution of 30 m*30 m is used 
for the urban region threshold setting. MODIS land cover data 
MCD12Q1 (2014–2020) is used for the accuracy test of nighttime light- 
based urban region extraction. Note that, to be comparable, all remote 
sensing images are resampled as the spatial resolution of 0.5 km*0.5 km 
and projected to the Asia North Albers Equal Area Conic projection. The 
methodology consists of urban region extraction and attribution analysis 
(flowchart see Fig. 1). In the attribution analysis, geographical, climatic 
and social-economic factors (Table 1 and Appendix Table 1) are used. 

2.1. Geodetector 

Geodetector is designed to assess the relationship between resultant 
outcome (the dependent variable Y) and driving factors (the indepen-
dent variable X) through the spatial heterogeneity (see (Wang et al., 
2016)). The Geodetector diagnostic consists of four detectors, including 
factor detector, interaction detector, ecological detector and risk de-
tector. Both numerical and qualitative data can be listed as independent 
variables after categorizing (Chen et al., 2020; Wang et al., 2016). The 
following two detectors are used. 

Factor detector: The factor detector q tests whether one particular 
factor X is the cause for a certain resultant outcome Y by comparing the 
total Y-variance in a subregion (or category, σ2

sub) with the Y-variance in 
the entire region σ2. N represents the number of pixels in the entire 
region, and Nsub represents the number of pixels in a subregion (or 
category): 

q = Factordetector(X, Y) = 1 −
∑L

h=1Nsubσ2
sub

Nσ2 (1) 

The factor detector q ranges from 0 to 1. When q approaches 0, 
categories of the independent variable X cannot explain the distribution 
of the dependent variable Y. Contrarily, when q approaches 1, categories 
of the independent variable X explain the distribution of dependent 
variable Y and can be listed as one of the driving factors. The higher the 
q value, the higher is the contribution of the driving factor. 

Interaction detector: The interaction detector calculates the inter- 
contribution of two factors (X1, X2) (inter-q value) on the dependent 
variable Y (more detailed information see (Ran et al., 2019)): 

Enhance and nonlinear: q(X1 ∩ X2)〉q(X1) + q(X2)

Independent: q(X1 ∩ X2) = q(X1) + q(X2)

Enhance and bivariate: q(X1 ∩ X2)〉Max(q(X1), q(X2) )

Weaken and univariate: Max(q(X1), q(X2) )〉q(X1 ∩ X2)〉Min(q(X1),

q(X2) )

Weaken and nonlinear: q(X1 ∩ X2)〈Min(q(X1), q(X2) )

Note that datasets of driving factors (the independent variable X) 
should be categorized before entering the diagnostics (more details see 

Table 1 
Illustration of urbanization related data, and geographical, climatic, social- 
economic factors. For details of the selected 40 social-economic factors see 
Appendix Table 1.  

Data Original 
Spatial 
resolution 

Period Sources 

Urbanization 
related 
data 

Nighttime light 
data 

500 m 2014–2020 NPP/VIIRS 

Reference image 30 m 2015 MSMT_RF ( 
Zhang et al., 
2020) 

Accuracy test 
image 

500 m 2014–2020 MCD12Q1.006 

Geographical 
factors 

Digital elevation 
model 

30 m / SRTM 

Slope 30 m / See section 2.3 
multiresolution 
index of the 
ridge top 
flatness 
(MrRTF) 

30 m / See section 2.3 

multiresolution 
index of valley 
bottom flatness 
(MrVBF) 

30 m / See section 2.3 

Climatic 
factors 

Temperature 
tendency 

1000 m 2000–2020 MOD11A1.006 

Precipitation 
tendency 

0.05◦ 1981–2020 CHIRPS(Funk 
et al., 2015) 

Drought index 
tendency 

2.5 arc min 1958–2020 TerraClimate( 
Abatzoglou 
et al., 2018) 

Social- 
economic 
factors 

Community 
indicators 

Prefectures 
level 

2014–2020 Shaanxi 
Provincial 
Bureau of 
Statistics, 
https://tjj.sh 
aanxi.gov.cn/ 
(Accessed 12 
May 2022) 

Population 
indicators 
Economy 
indicators 
Agriculture 
indicators  
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section 2.3). 

2.2. Nighttime light based urban region extraction 

Unlike previous urban region extraction methods mentioned in the 
introduction, factor detector (see section 2.1) is used here. Only the 
nighttime light data and the reference impervious surface distribution 
are required as driving factor (the independent variable X) and resultant 
outcome (the dependent variable Y), respectively using the data of 2015. 
Further detailed processes are noted: 

Threshold setting: Two methods are employed and compared for a 
better threshold setting. 

i) Closest area method: It determines the optimal threshold, when 
area from nighttime light data is closest to the area from the reference 
impervious surface (for a more detailed description see also (Yu et al., 
2021)). 

ii) Maximum contribution method: It is novel that the Geodetector 
diagnostic is to be used for the first time to extract the optimal threshold 
of the nighttime light signal-based urban region. This is not performed 
by comparing urban area differences, but by integrating the spatial 
distribution heterogeneity between the nighttime light signal and the 
reference impervious surface distribution (for detailed advantages see 
introduction). 

That is, the optimal digital number (or threshold), DNopt , of the 
nighttime light signal for defining the urban region as regions with 
nighttime light exceeding the DNopt threshold, is when the maximum 
contribution qmax of the nighttime light data on the reference impervious 
surface distribution is obtained (see Eq. (2)): 

DNopt = f − 1{qmax} = f − 1[Factordetectormax(nightlight≥DNx , reference image)]

where DNx ∈ {0.1,⋯, 60, step = 0.1} (2) 

Thresholds adjustment: Based on the above-obtained optimal 
threshold with the reference impervious surface distribution of 2015, 
annual urban region from 2014 to 2020 is calculated with nighttime 
light exceeding the DNopt2015. To reduce the effects of over-glow in a 
certain year, usually caused by anthropogenic activity in undeveloped 
areas that were not taken into account in statistical data of urban 
development in the subsequent year, a further quadratic regression has 
been applied to adjust the urban region from 2014 to 2020 with a F-test 
(p-value < 0.05 is used unless mentioned otherwise); the yearly 
thresholds are adjusted accordingly. 

Accuracy test: Followed by the threshold adjustment, the extracted 
urban region from 2014 to 2020 is tested with MODIS Land Cover 
Product (MCD12Q1, 500 m spatial resolution) by an input of a random 
sample selection with a third of the total pixel number into the ‘compute 
confusion matrix’ tool in ArcGIS software 10.7 (application result see 

section 3 and Table 2). 

2.3. Attribution: geographical, climatic and social-economic factors 

Geographical, climatic, social-economic factors are compared and 
attributed to the urbanization obtained from the nighttime light data. 
Geographical and climatic factors require preprocessing and all driving 
factors require a categorizing process: 

Geographical indicators: Slope, multi-resolution index of the ridge 
top flatness (MrRTF, (Gallant and Dowling, 2003)) and of valley bottom 
flatness (MrVBF, (Gallant and Dowling, 2003)) are calculated from 
digital elevation model (DEM) using SAGA GIS software 8.2. As a widely 
used geographical factor, slope describes the change in elevation. 
MrRTF is a topographic index designed to identify high flat areas, while 
the MrVBF index is designed to identify flat valley bottoms. 

Climatic tendency: The linear regression of long term yearly aver-
aged climate parameter Cliyr, including temperature, precipitation and 
drought index, is calculated as the climatic independent variable input 
(data descriptions see Table1). 

tendency(x) =
n*
∑n

yr=1yr*Cliyr −
(∑n

yr=1yr
)(∑n

yr=1Cliyr

)

n*
∑n

yr=1yr2 −
(∑n

yr=1yr
)2 (3) 

Note that n represents the number of years, yr ∈ {1,2,⋯, n}. 
Categorizing: As mentioned before, Geodetector requires the inde-

pendent factors to be classified into categories. Here Jenks Natural 
Breaks Classification (Natural Breaks) in ArcGIS software 10.7 is used 
due to its advantage in minimizing the variance within the classes and 
maximizing the variance between classes (Jenks, 1967). 

Attribution (Geodetector): Factor detector and interaction detector 
(see section 2.1) are used to define whether one particular factor is the 
reason for the nighttime light-based urbanization and to explore the 
interrelationships between the driving factors of the urbanization pro-
cess. Note that all the results related to contribution shown in this paper 
have passed the significance test unless mentioned otherwise. 

Attribution (Random Forest): The Gini importance from Random 
Forest model (Menze et al., 2009) is frequently used for measuring the 
independent variable impurity with respect to a reference image (Jin 
et al., 2018) and thus to obtain the importance of different driving forces 
(Huang et al., 2020; Ma et al., 2020). With the Gini importance (the 
package randomForest in R could be used for calculation), the larger the 
reduction in Gini importance caused by independent variable changes is, 
the more important the variable (Foody and Arora, 1997). 

3. Application and results: Shaanxi Province 

The three-step spatial temporal attribution analysis is applied to 

Table 2 
Accuracy test. Note that OA represents overall accuracy.  

region method index 2014 2015 2016 2017 2018 2019 2020 

Shaanxi Closest area OA(%)  98.21  98.27  98.28  98.12  98.03  98.00  98.00 
Kappa  0.44  0.45  0.46  0.45  0.45  0.45  0.45 

Maximum contribution OA(%)  98.48  98.43  98.41  98.35  98.30  98.24  98.20 
Kappa  0.47  0.47  0.47  0.47  0.48  0.47  0.47 

Shanbei Closest area OA(%)  99.40  99.45  99.43  99.40  99.39  99.41  99.35 
Kappa  0.23  0.25  0.24  0.23  0.21  0.24  0.19 

Maximum contribution OA(%)  99.42  99.46  99.46  99.44  99.38  99.43  99.37 
Kappa  0.22  0.25  0.25  0.24  0.21  0.24  0.20 

Guanzhong Closest area OA(%)  95.35  95.48  95.49  94.93  94.58  94.27  94.13 
Kappa  0.51  0.50  0.50  0.50  0.48  0.48  0.47 

Maximum contribution OA(%)  96.50  96.26  96.18  96.03  95.84  95.55  95.25 
Kappa  0.55  0.53  0.53  0.54  0.53  0.52  0.50 

Shannan Closest area OA(%)  99.52  99.52  99.48  99.40  99.32  99.38  99.40 
Kappa  0.49  0.48  0.50  0.47  0.45  0.48  0.49 

Maximum contribution OA(%)  99.50  99.45  99.42  99.36  99.30  99.34  99.32 
Kappa  0.4  0.47  0.48  0.46  0.44  0.47  0.48  
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Shaanxi Province, which comprises topographically, social- 
economically and climatically complex areas due to the Qinling Moun-
tains and local different urbanization stages. Three sub-regions are 
included (Fig. 2): 1) Northern Shaanxi Plateau or Shanbei region, with 
an elevation from 900 m to 1900 m, which is relatively cold, dry and 
known for local coal resources. 2) Guanzhong Plain lies in the middle of 
Shaanxi Province and is covered by urban agglomerations attracting 
most of the population. 3) Shannan Mountain region, south of the 
Qinling-Huaihe Line, is relatively humid and, in contrast to Guanzhong 
Plain, contribution to emigration. Here, threshold setting of the night-
time light-based urbanization is obtained on both provincial and sub- 
region scale using both Geodetector based maximum contribution and 
closest area methods. Employing an accuracy test, attribution analysis 
relates geographical, climatic and social-economic factors with the ur-
banization process. 

3.1. Geographical, climatic and social-economic factors 

Geographical, climatic and social-economic factors in Shaanxi 
Province (Fig. 2) are characterized in the following: 

i) Geographically (Fig. 2 b and c), 90% urban land is located in re-
gions where elevation and slope are less than ~ 1 km and ~ 3◦, 
respectively, which fits Zipf’s power-law implying that small occur-
rences are extremely common, whereas large instances are extremely 
rare (Adamic et al., 2000). That is, linking urban planning with the 
preference for certain geographical features shows that, instead of 
mountainous regions, flat land appears to be preferable because of lower 
building costs and better urban expansion possibilities (see (Zhao et al., 
2014)), which is in agreement with previous research (Ma and Xu, 2010; 
Mundia and Aniya, 2005; Pan et al., 2021). 

ii) Climatically (Fig. 2 f-h), the temperature (precipitation) has been 
significantly increasing (decreasing) in Guanzhong Plain in the middle 

of Shaanxi Province, where most of the urban agglomerations are 
located. However, for most regions over the Northern Shaanxi Plateau or 
Shanbei and Shannan Mountain region, the temperature (precipitation) 
has been significantly decreasing (increasing). Although the above- 
mentioned differences of temperature and precipitation occur over 
three sub-regions, the whole province is getting drier (see Fig. 2h) ac-
cording to the Palmer drought index computed using precipitation, 
temperature and soil characteristics (more details see (van der Schrier 
et al., 2011)). 

iii) The social-economical aspect shows that after a rapid decreasing 
from 2016 to 2017, local government budgets of Shaanxi Province and 
for the three regions of Guanzhong Plain, Northern Shaanxi Plateau or 
Shanbei region and Shannan Mountain region, indicate a stagnation. 
Guanzhong Plain accounts for about 57% local government budgets of 
the total while Northern Shaanxi Plateau or Shanbei region and the 
Shannan Mountain region occupy about 34% and 9% of the total gov-
ernment budgets. This is inconsistent with the proportion of permanent 
residents. The number of permanent residents of Shaanxi Province is 
stable from 2014 to 2020 with a slope of 0.84 (not significant), with 
about 63%, 15% and 22% residing in the Guanzhong Plain, Northern 
Shaanxi Plateau or Shanbei region and Shannan Mountain region, 
respectively. That is, the local government budgets per person is highest 
(lowest) over Northern Shaanxi Plateau or Shanbei region (Shannan 
Mountain region) region. 

3.2. Geodetector analysis of urbanization 

Based on the heterogeneity of geographical, climatic and social- 
economic distribution in Shaanxi Province (section 3.1), threshold 
setting, adjustment, accuracy test and attribution analysis are carried 
out depending on both provincial and subregion scale. 

Fig. 2. Geographical setting of geographical, climatic and social-economic factors in Shaanxi Province: (a) the location map of the study area; (b) digital elevation 
model (DEM); (c) slope; (d) MrRTF; (e) MrVBF; (f) temperature tendency; (g) precipitation tendency; (h) drought index tendency; (i) population (prefectures); and (j) 
Local government budgets (prefectures). Note that the three sub-regions (Northern Shaanxi Plateau or Shanbei, Guanzhong Plain, and Shannan Mountain region) and 
the reference built-up area (MSMT_RF, 2015 (Zhang et al., 2020)) are highlighted in (a). 
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3.2.1. Threshold setting and adjustment: Maximum contribution versus 
closest area 

To obtain the 2015 urban region threshold for suitably defining the 
urbanization, a novel Geodetector based maximum contribution method 
is introduced and compared with the traditional closest area method 
over both provincial and sub-regions scale (Fig. 3). The following results 
are noted: 

i) The maximum contribution method indicates that as the night-
time light threshold increases, the Geodetector based contribu-
tion q from the area of the region exceeding the threshold 
(independent variable X) to the reference impervious surface 
(dependent variable Y), increases up to a peak value and then 
decreases (see green in Fig. 3 a-d,). Meanwhile, the closest area 
method shows area of region greater than threshold approaches 
to the area of the reference impervious surface then apart (see 
pink in Fig. 3 a-d). 

ii) Slight differences of the final thresholds from the two method-
ologies occurred in the subregions of Northern Shaanxi Plateau or 
Shanbei region and Shannan Mountain region (Fig. 3b and 3d), 
while more obvious differences of the final thresholds from the 
two methodologies were detected for the subregion of Guanz-
hong Plain scale (threshold = 4.6 versus 3.0, Fig. 3c). The Geo-
detector based maximum contribution method has a notable 
improvement in the accuracy of extracting nighttime light based 

urban region in the subregion of Guanzhong Plain which is 
mainly covered by flat urban land (see Fig. 3).  

iii) The final thresholds from the two methodologies show high 
values (threshold greater than 12) in the subregion scale of 
Northern Shaanxi Plateau or Shanbei region with low Kappa 
value of ~ 0.2 compared with thresholds (threshold < 6) from 
both the whole province scale and the other two subregions (see 
Table 2). This may be related to Northern Shaanxi Plateau or 
Shanbei region, which is one of the main coal-producing regions 
in China (Liu et al., 2015) where non-urban area light is observed 
like in the districts of the oil industry causing nighttime light 
misclassification near Williston, in North Dakota (US) (Cai et al., 
2017). 

3.2.2. Accuracy test with MODIS data 
Obtaining the 2015 urban region thresholds from the novel Geo-

detector based maximum contribution method and the traditional 
closest area method, urban areas from 2014 to 2020 are calculated. A 
further urban area adjustment (Fig. 3 e-h) is carried out based on the 
regression of the urban area from 2014 to 2020 to reduce the effects of 
over-glow in a certain year. Results from the two methods over both 
provincial and sub-regional scale are tested with MODIS data and show 
that the Geodetector based maximum contribution method is superior in 
both overall accuracy and in Kappa values compared with the traditional 
closest area method, with the exception of the Shannan Mountain re-
gion. Thus, the closest area method appears to be more suitable in the 

Fig. 3. Illustration of urban extraction: threshold setting (1st row), urban area adjustment (2nd row), distribution of urban extraction (3rd row). Comparison of 
Geodetector based maximum contribution result versus the closest area-based result is shown on both provincial scale (a and e) and sub-regions scale (b and f, c and 
g, d and h). Extraction results of urban region in Xi’an (2015) are shown for example: (i) nighttime light data, (j) reference data (MSMT_RF, 2015, see (Zhang et al., 
2020)), and Geodetector based maximum contribution from (k) provincial scale threshold and (l) sub-regions scale threshold. Note that CA represents closest area 
method and MC represents maximum contribution method. 
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mountainous regions, while the Geodetector based maximum contri-
bution method has a notable accuracy advantage in flat urban land. This 
may be related to a higher concentration of urban distribution over flat 
terrain, which leads to a relatively smaller variance associated with a 
higher contribution value q (see Eq. (1)). 

3.3. Attribution analysis 

Since the urban region is located mainly over the flat regions, the 
novel Geodetector based maximum contribution method is used in the 
following attribution analysis due to its superiority in the overall 

accuracy test (see Table 2). For the year 2015, contributions from 
geographical, climatic and the top 9 social-economic factors are listed in 
Table 3. The highest contribution for urban region arises from social- 
economic factors and (in decreasing order) from total retail sales of 
consumer goods > per capita annual disposable income of rural 
households > per capita annual disposable income of urban households 
> number of neighborhood committees > local general budgetary rev-
enue > number of street communities > number of legal entities >
number of towns (only contribution rates greater than 0.5 are listed). For 
geographical factors, the contributions of elevation (0.44), is greater 
than MrVBF and MrRTF (0.41 and 0.38, respectively), while slope is 
with less importance of 0.28. The climatic factors appear to be less 
relevant in the urban region of the year 2015 with contributions ranking 
from tendencies of drought index (0.18) > temperature (0.15) > pre-
cipitation (0.08). 

In general, for a net contribution, social-economic factors indicate a 
relatively higher value than geographical factors, and both of which 
exceed the influence of climatic factors. This is because social-economic 
factors directly improve the urban infrastructure system and working 
opportunities which attracting population immigration, supports a 
further urban development. In addition, geographical factors influence 
shape and boundaries of urban expansion. 

To better understand the driving mechanisms of urbanization, 
contribution dynamics and factor interactions are calculated. Results 
from 2014 to 2019 (see Figs. 4 to 7) are presented (without the agri-
culture data missing in 2020). Along the diagonal line (slope = 1), the 
contribution (q value) of a single factor is displayed with values ranging 
from 0 to 1 (color from blue to red), while inter-contributions of each 
two factors are shown below the diagonal-line with the same color 
ranges. Likewise for the factor interactions: Interaction of the two cat-
egories is shown above the diagonal line. Here, interactive types of 
bivariate and nonlinear enhance are detected. The following results are 
noted: 

i) On the whole provincial scale (Fig. 4), the following single factor 

Table 3 
The Geodetector based contribution statistics of geographical, climatic, social 
and economic factors. Note that, 40 social and economic factors are integrated in 
the Geodetector, and the contribution values (q-value) greater than 0.5 are 
listed.  

type Contributor q 
value 

Geographical factors DEM  0.44 
MrVBF  0.41 
MrRTF  0.38 
Slope  0.28 

Climatic factors Drought index tendency (1958–2015)  0.18 
Temperature tendency (2000–2015)  0.15 
Precipitation tendency (1981–2015)  0.08 

Social-Economic 
factors 

Total retail sales of consumer goods  0.90 
Per capita annual disposable income of rural 
households  

0.85 

Per capita annual disposable income of urban 
households  

0.71 

Number of neighborhood committees  0.69 
Local general budgetary revenue  0.65 
Number of street communities  0.61 
Number of legal entities  0.58 
Number of towns  0.55  

Fig. 4. Attribution of geographical, climatic and social-economic factors to urbanization and related factor interactions over Shaanxi Province from 2014 to 2019.  
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Fig. 5. Attribution of geographical, climatic and social-economic factors to urbanization and related factor interactions over Northern Shaanxi Plateau or Shanbei 
region from 2014 to 2019. 

Fig. 6. Attribution of geographical, climatic and social-economic factors to urbanization and related factor interactions over Guanzhong Plain from 2014 to 2019.  
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contributions to urbanization show the following ranking: economy >
community > population > geographical > climatic > agriculture. ii) 
For inter-contributions from two factors to urbanization, high contri-
bution values are diagnosed as combinations with economy and/or 
community (dark red in the left, approaching to the maxima 1). iii) In 
addition, although most of the agriculture related factors are linked with 
low contribution values, they show nonlinearity as enhanced interaction 
when being associated with other factors (see pink in the top). iv) As 
time increases (2014 to 2019), the contributions from economy and 
community factors to urbanization decrease (see dark red getting lighter 
or even turning yellow in the right of Fig. 4). 

High contribution factors vary on the subregion scale (Figs. 5-7, 
representing contribution dynamics and factor interactions in Northern 
Shaanxi Plateau or Shanbei region, Guanzhong Plain and Shannan 
Mountain region): 

i) For Northern Shaanxi Plateau or Shanbei region (Fig. 5), the high 
contribution values (~0.5) are mainly due to economy factors in 2014 
(Fig. 5a). But as time continues, all factors, that is population, economy, 
community, geographical, agriculture, climatic, contribute almost 
equally in 2016 (Fig. 5c). Economy factors dominate the contributions to 
urbanization again in 2018 (Fig. 5e), but they are surpassed by the 
population factors in 2019 (Fig. 5f). In addition, enhanced nonlinear 
interaction between two factors is widely distributed in 2014 (see pink 
in the left), but it keeps decreasing until 2019 with only climatic and 
some of the agricultural factors remaining. 

ii) For Guanzhong Plain (Fig. 6), high contribution values show 
similarity with the provincial scale which are contributed by economy 
and community factors (see dark red in the row of community and 
economy, approaching the maxima of 1). With time progressing (from 
2014 to 2019), the contributions from economy and community factors 
to urbanization decrease (dark red getting lighter or even turning yel-
low), while the contributions from other factors increase (blue getting 
lighter or even yellow). And for Shannan Mountain region (Fig. 7), 
geographical factors contribute too obvious to notice the other factors, q 

= ~1. 

4. Discussion 

4.1. Model assumption 

Area changes of continuous nighttime light represent the spatial 
extent of intensively used anthropogenic settlements, a further expan-
sion of which depends on factors from geographical, climatic, social- 
economic reasons. The contribution results from those independent 
factors to the nighttime lighted urban are obtained from both Geo-
detector method and Random Forest with the aim to be of possible 
assistance to municipal governments and city stakeholders to city-design 
with geographical, climatic and social-economic changes and in-
teractions in mind. Thus, an underlying assumption is the distribution of 
urbanization and/or its expansion exhibits a spatial similarity with the 
distribution of those factors. The greater the influence of the factor is, 
the higher the contribution value. This spatial ‘factor-urbanization’ 
consistency of geographical, climatic or social-economic factors has 
been indicated by previous research (Christensen and McCord, 2016; 
Henderson et al., 2017; Ma et al., 2021). For example, social economy, 
education, secondary industry and living environment are found to be 
the four dominating factors on the development of the Yangtze River 
Delta from 2007 to 2016 (Ma et al., 2021). 

4.2. Comparison: Urban extraction and attribution 

Nighttime lighted data are used to defining urban area, which by-
passes the question that what land cover types should be listed into 
urban. With the same or modified DN-threshold, interannual urban 
development is thus comparable. And this methodology for defining 
urban with nighttime light data is frequently used (see (Liu et al., 2012; 
Yu et al., 2021; Zou et al., 2017)). 

The closest area method determines urban regions with area 

Fig. 7. Attribution of geographical, climatic and social-economic factors to urbanization and related factor interactions over Shannan Mountain region from 2014 
to 2019. 

S. Huang et al.                                                                                                                                                                                                                                  



Ecological Indicators 148 (2023) 110046

10

Fig 8. Comparison is carried out between Geodetector based contribution values and Random Forest (RF) based Gini importance: (a) Geodetector based contribution 
values changing with increasing number of categories, (b) the Gini importance of RF decreases as the number of independent variables increases, and diagrams of 
Random Forest based Gini importance versus Geodetector based contribution values for all categories (c-h, linear regression coefficients R2, selected factors 
see Table 3). 
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similarity between nighttime light data and reference image. The 
maximum contribution method assumes the distribution of urbanization 
and/or its expansion exhibit a similar spatial distribution of nighttime 
lighted area. Here, nighttime lighted data in each pixel is defined by an 
intensity (referred to DN values). A suitable data discretization is 
necessary to define whether a pixel is or is not an urban area; that is, if it 
is above or below a particular DN-threshold. Thus, all the DN-threshold 
values (600 trials) are tested by stepwise increasing DN from 0 to 60 in 
intervals of 0.1. The greater the similarity of the nighttime lighted area 
is, compared with the fine urban land use distribution, the higher the 
contribution value. Pixels above the DN-threshold of the highest 
contribution value are defined as urban area. 

4.3. Net and interactive attribution 

More topographic indicators are tested (not shown), including digital 
elevation model (DEM), slope, aspect, convergence index, multi-
resolution index of the ridge top flatness (MrRTF), multi-resolution 
index of valley bottom flatness (MrVBF), Terrain Ruggedness Index, 
Topographic Position Index and Topographical Wetness Index. Howev-
er, Convergence Index and Topographic Position Index did not pass the 
significant test of the Geodetector contribution analyses. Furthermore, 
none of those factors show a higher contribution than the original local 
DEM, and only MrRTF and MrVBF indicate similar contribution values 
(0.44, 0.41 and 0.38). That is, except for DEM, the results provide new 
insights that high flat areas and flat valley bottoms provide a high 
contribution to the urbanization process, particularly in mountainous 
region (e.g., Shannan Mountain region, 0.97, 0.98, respectively). 

Although the net attribution from geographical and agricultural 
factors (blue circle in Fig. 4) in Shaanxi Province is low (~0.37 and ~ 
0.11), interactive attribution from both geographical and agricultural 
factors (red circle in Fig. 4) lead to an obvious improvement with the 
interactive contribution value rising up to 0.78. Similar enhanced 
interactive contribution value could also be diagnosed in the flat urban 
region, Guanzhong Plain, but can not be diagnosed in Northern Shaanxi 
Plateau and Southern Shannan Mountain region. That is, the flat urban 
regions are significantly affected by an enhanced contribution of the 
combination of geographical with agricultural factors. And this is 
probably due to the competitive relationship between urban and agri-
cultural land use. 

4.4. Model priority and uncertainties 

Geodetector is, for the first time, applied to define the nighttime 
lighted urban area by selecting the optimal DN-threshold, which pro-
vides the largest contribution to the reference landcover data. Geo-
detector requires all the independent variables to be categorized. This is 
suitable for defining the nighttime lighted urban which should also be 
categorized, namely above and below the DN-threshold representing the 
urban or non-urban domain. Furthermore, the selected nighttime 
lighted urban area is tested for its accuracy with present land cover data 
and compared with frequently used methods for diagnosing nighttime 
lighted urban boundary. The results indicate a better performance of the 
Geodetector over flat regions. 

The novel comparison of the Geodetector based analysis with the 
Random Forest scheme reveals the following results:  

i) Although the Geodetector is a widely used method, it should be 
used with some caution because all the independent variables 
need to be categorized. With increasing number of categories, the 
contribution values show ‘stair-case like’ increases (Fig. 8a). 
Thus, it is hard to define the most suitable number for catego-
rizing. That is, valuable information may be inevitably lost during 
the categorization procedure, and thus it may be misleading the 
final contribution results.  

ii) Random forest (RF) is a widely used machine learning method, 
and an increasing Gini importance of RF provides a measure of 
factor relevance of reference data without any categorizing (Jin 
et al., 2018). However, the model is less stable as the number of 
factors increases. That is, the Gini importance of RF decreases as 
the number of independent variables increases (Fig. 8b). 

iii) Comparison is carried out between Geodetector based contribu-
tion values and Random Forest based Gini importance (Fig. 8 c- 
h). For Geodetector, all the independent variables are categorized 
into five classes using Natural break. The linear regression co-
efficients R2 between Geodetector based contribution value and 
the RF based Gini importance show: Agriculture (0.93) >
Geographical (0.8) > Population (0.6) > Economy (0.45) >
Community (0.33) > Climatic (0.02). 

4.5. Limitation and future work 

Geographical, climatic or social-economic factors and urbanization 
are mutually influencing each other in the development of a city and 
disparities suggest different opportunities for the urbanization process, 
meanwhile urbanization indicates influences on land surface parameter 
changes (e.g., geographical, ecological, and climatical parameters), as 
well as changes on local investment. However, in initializing a city, 
geographical, climatic and social-economic factors are of importance. 
For example, Christensen and McCord (2016) confirm the role of three 
factors on shaping and constraining urbanization distribution, including 
biophysical land suitability for agriculture, distance to major ports and 
terrain slope, with which they explain ~ 50% of the urbanization dis-
tribution variations. Thus, this research is carried out in one direction 
according to the definition of urbanization as a process whereby pop-
ulations move from rural to urban areas, enabling cities and towns to 
grow, and this process typically brings the need for more housing and 
jobs associating with a need for land-use change. The influence from the 
urbanization to geographical, climatic and social-economic factors will 
be considered in the future work (Christensen and McCord, 2016). 

5. Conclusion 

Unlike trying to understand urbanization induced changes, this work 
is to understand and examine the driving mechanisms of urbanization, 
as well as their model uncertainties. This is important because it is the 
first step towards a holistic approach, embedding economic develop-
ment, social change, ecological environment, soil and water resources 
and other fields, which provides guidance for planning a sustainable 
urban development. Beyond a statistical diagnostic between resultant 
outcome (the dependent variable Y) and driving factors (the indepen-
dent variable X), Geodetector and Random Forest are employed to assess 
– through spatial heterogeneity – the relationship between resultant 
outcome and driving factors. Moreover, urbanization is an evolving 
process neither does it remain constant nor do the contributions from the 
driving factors of the urbanization. To capture the contribution dy-
namics from driving factors and from factor interactions to the changing 
urbanization, a novel three-step spatial–temporal attribution analysis 
has been designed and applied to Shaanxi Province, which includes 
nighttime light data based on the long-term urbanization, the change 
attribution of geographical, climatic and social-economic factors to this 
long-term urbanization process; and it includes model uncertainties by 
comparing attribution to urbanization between Geodetector and 
Random Forest. The main conclusions are noted::  

i) Nighttime light data based long-term urbanization has stably 
increased in Shaanxi Province from 2014 to 2020. Selected 
methods for extracting the long-term urbanization measures 
include the closest area method, which is more suitable to be used 
in the mountainous region, while the Geodetector based 
maximum contribution method shows improved accuracy 
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notably in flat urban land. The peak in the maximum contribution 
method represents the strong spatial similarity between the 
reference and the nighttime light.  

ii) The most obvious contribution dynamics depends on local urban 
development strategies associated with government investment 
(see economy factors). For example, urban regions over Guanz-
hong Plain (mountainous Northern Shaanxi Plateau or Shanbei 
region) obtain an early (late) development with high contributing 
values from economy factors since 2014 (2018). 

iii) Controlling factors and their contributions vary in flat (Guanz-
hong Plain) and mountainous urban regions (Northern Shaanxi 
Plateau or Shanbei region and Shannan Mountain region) from 
2014 to 2020. For example, high flat areas and flat valley bottoms 
provide great contribution to the urbanization process, particu-
larly in mountainous region (e.g., Shannan Mountain region, 
0.97, 0.98, respectively).  

iv) Besides government investment, population factors attain high 
contribution values in mountainous regions of low population. 
Migration into the Northern Shaanxi Plateau or Shanbei moun-
tainous urban regions, which is due to mining of local coal re-
sources, contributes to the local urbanization with the highest 
value, occurring in 2019.  

v) Geodetector based contribution values increase ‘staircase-like’ 
with increasing numbers of categorized classes of independent 
variables. For Random Forest, the Gini importance decreases as 
the numbers of independent variables increase. In this sense, we 
provide a novel uncertainty analysis scheme for the Geodetector, 
which is based on the suitable choice of the categorizing number 
and the number of independent factors. 

Generally, geographical and climatic factors contribute highly to the 
urbanization process in its very beginning (of the establishment of a 
city), but they are contributing less during the present-day urbanization 
process when compared with economic and even population factors in 
the mountainous regions. 
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Table A1 
Detailed information for social-economic indicators.  

Annual data Impact Factors 

Four Community 
indicators 

number of towns; number of street communities; 
number of village committees; number of 
neighborhood committees; 

Six Population 
indicators 

number of permanent residents; residential population 
change; total households; total registered population; 
total registered male population; total registered 
female population 

Nine Economy 
indicators 

number of companies; gross domestic product (GDP); 
GDP growth rate; local government budgets; local 
expenditure; urban disposable personal income; rural 
disposable personal income; total retail sales of 
consumer goods; growth in total retail sales of 
consumer goods 

Twenty-one Agriculture 
indicators 

gross output value of Farming, Forestry, Animal 
Husbandry and Fishery (FFAF); gross output value 
change in FFAF; cultivated land area; agricultural 
energy consumption; chemical fertilizers consumption, 
agricultural sheeting consumption; grain area; grain 
production; oil production; cotton production; 
vegetable production; fruit production; apples 
production; meat production; egg production; milk 
production; number of cattle, milk cow, hogs, sheep 
and poultry.  
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