YEAR-ROUND FOREST-FLOOR GREENHOUSE GAS FLUXES IN A SUBALPINE CONIFEROUS FOREST

Luana Krebs¹, Susanne Burri¹, Iris Feigenwinter¹, Mana Gharun², Philip Meier¹, Liliana Scapucci¹, Nina Buchmann¹ ¹Institute of Agricultural Science, Grassland Sciences Group, ETH Zurich ²Department of Geosciences, Institute of Landscape Ecology, University of Münster, Münster, Germany

1 INTRODUCTION

- **Forests** play an important role in the global carbon (C) budget by sequestering about 30% of global anthropogenic CO₂ emissions and by acting as an important CH₄ sink.
- Forest-floor greenhouse gas (GHG) fluxes are one of the major components to consider when determining the C budgets of forests.
- Although winter fluxes are essential to determine the annual C budget of forests, there have been very few studies that have examined long-term, year-round forest-floor GHG fluxes in high elevation forests.
- Especially during snowy periods, forest-floor GHG fluxes are difficult to measure and are therefore often missing from studies.

2 OBJECTIVES

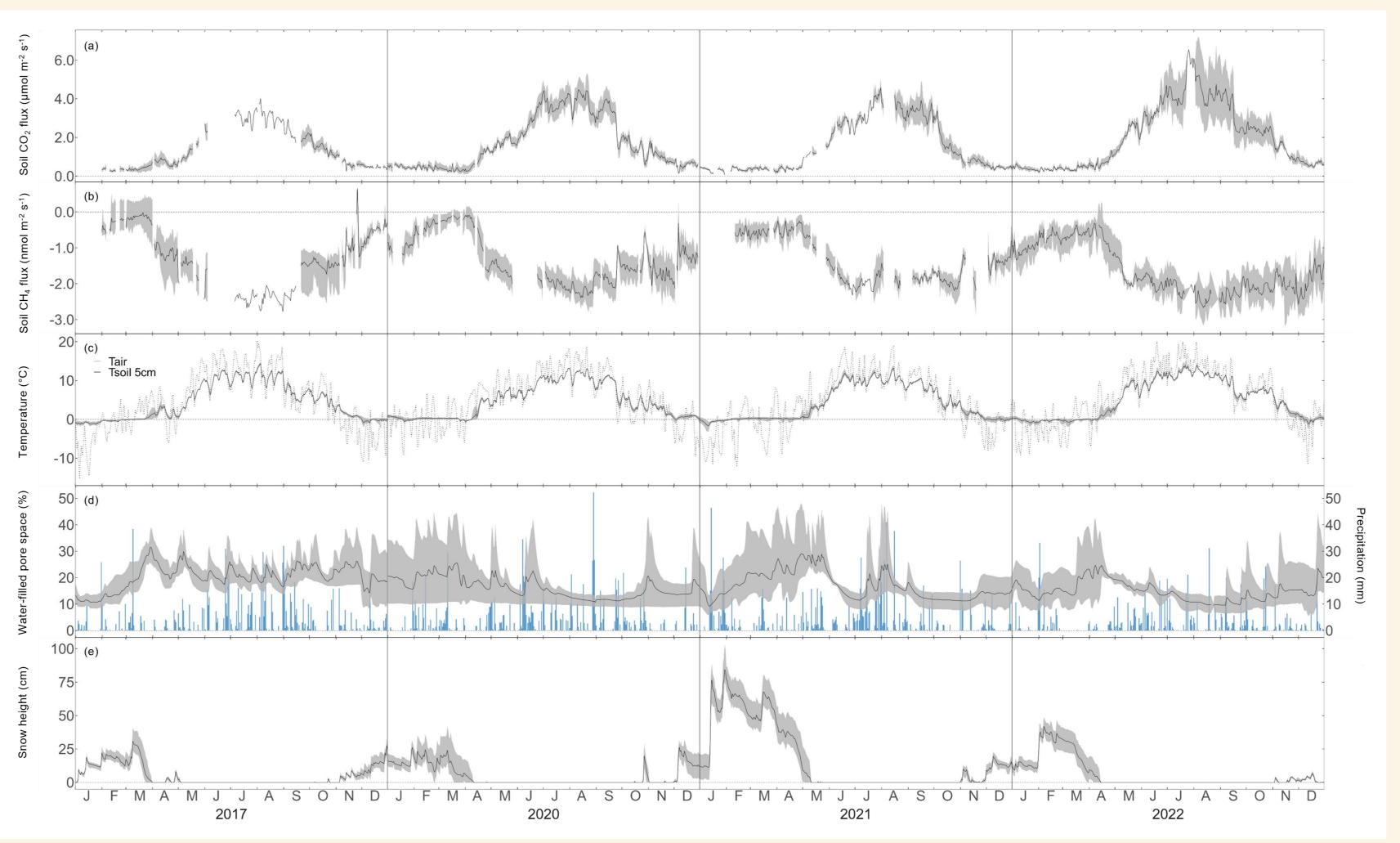
- A. Investigate the seasonal and annual variations in climate variables and forest-floor CO_2 , CH_4 and N_2O fluxes
- B. Evaluate the climate drivers of the forest-floor GHG fluxes
- C. Calculate annual budgets of the forest-floor GHG fluxes

3 METHODS

Study site: Subalpine Norway spruce (*Picea abies*) forest located in Davos in the Swiss Alps (at 1640 m a.s.l.); certified as ICOS Class 1 Ecosystem station; annual precipitation sum: 1020 mm; mean annual temperature: 4.3 °C (1997-2021); understory vegetation: blueberry (Vaccinium myrtillus and Vaccinium gaulterioides) and mosses (Sphagnum sp.).

Automatic chamber measurements: CO₂, CH₄ and N₂O fluxes for the years 2017 and 2020-2022 (N₂O only 2017, 2020); year-round measurements (every 3 hours) at four custom-made automatic chambers, aggregated to daily averages for analysis.

Random forest (RF) analysis: To assess importance of environmental drivers for CO₂, CH_4 fluxes and to gap-fill CO_2 , CH_4 fluxes for budget calculation. Environmental predictor set:


- air temperature (T_{air})
- soil temperature (T_{soil} at ~5 cm depth)
- water-filled pore space (WFPS at ~5 cm depth)
- photosynthetic photon flux density (PPFD)
- 1 and 4 day leads of WFPS, T_{soil}, T_{air}, PPFD
- snow height
- leaf area index (LAI)
- total C and N stock

4 RESULTS & DISCUSSION

Fig. 1: Daily mean forest-floor a) CO_2 fluxes, b) CH_4 fluxes, c) soil temperature at 5 cm depth and air temperature, d) waterfilled pore space at 5 cm depth and precipitation, and e) snow height for 2017, 2020,2021, and 2022. Black lines show mean over four chambers, gray ribbons show min and max among the chambers.

- **B** Modeling the forest-floor CO_2 and CH_4 fluxes using the RF yielded R² of 0.95 and 0.92, respectively (on test data).
 - Most important drivers of CO₂ and CH₄ fluxes are **T**_{soil} and **4d-lead** of T_{soil}, respectively.
 - Winter fluxes are mainly driven by **snow height**.

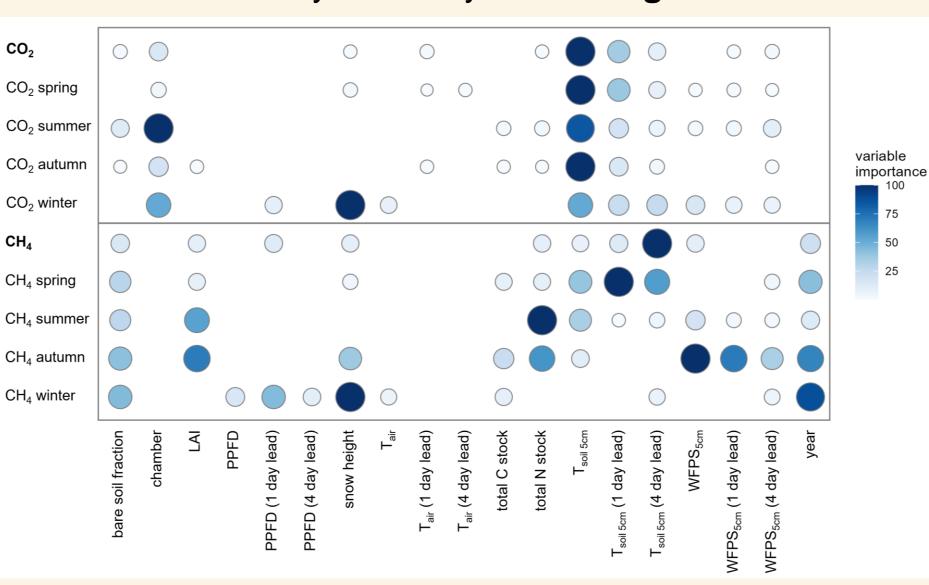
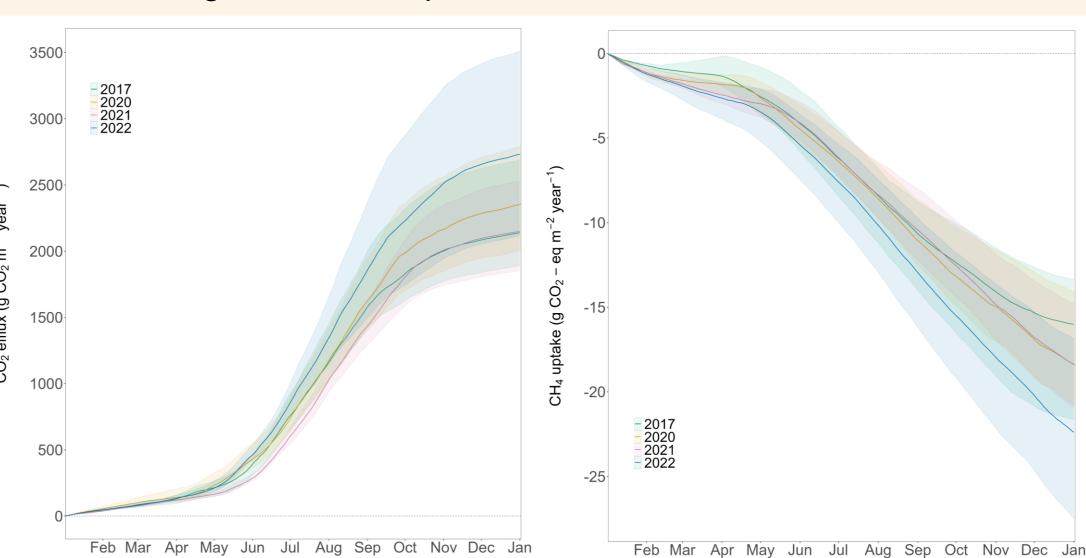
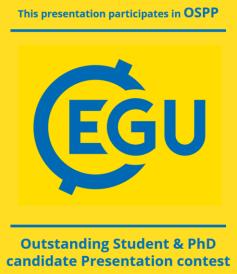


Fig. 2: Relative variable importance (normalized to 0-100) according to the random forest driver analysis for CO_2 and CH_4 fluxes for the years 2017, 2020-2022.


bare soil fraction inside chambers


• The forest-floor is a continuous source of CO₂ with very high flux rates in summer. The magnitude of the CO₂ fluxes is particularly high in 2022. • The forest-floor is a consistent sink for CH_4 . Periodically, we find short peaks of CH_4 emissions connected to snowmelt and snow fall. • N₂O fluxes are very low (not shown), which is why we consider them negligible for the overall forest-floor GHG budget at our site. • 2022 was by far the warmest year ever recorded at the Davos research site (annual mean T_{air} was 5.6 °C).

- Mean annual forest-floor CO_2 budget: **2.34±0.39 kg CO_2 m⁻² yr⁻¹**
 - Mean annual forest-floor CH₄ budget: -0.70±0.13 g CH₄ m⁻² yr⁻¹
 - The total annual GHG budget is mainly determined by the CO₂ emissions.
 - Estimates agree well with previous studies.

Fig. 3: Annual cumulative CO_2 (g CO_2 m⁻² yr¹) and CH_4 (g CO_2 –eq m⁻² yr¹) fluxes per year. Ribbons show min and max among the chambers, the lines show the annual means over all chambers.

5 SUMMARY

- The forest-floor CO₂ and CH₄ fluxes show strong short-term, seasonal and inter-annual variability, driven by different environmental parameters.
- On the annual basis, the forest-floor is a **CO**₂ source and CH₄ sink, with CH₄ fluxes only offsetting **0.8** % of the CO_2 emissions.
- The length of the active period largely determines the annual forest-floor GHG budget, which can only be captured with **year-round** measurements.

REFERENCES

https://doi.org/10.1093/treephys/25.5.609

- IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Ni, X., Groffman, P.M., 2018. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. 115, 8587-8590 https://doi.org/10.1073/pnas.1807377115 Schindlbacher, A., Jandl, R., Schindlbacher, S., 2014. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest. Glob. Change Biol. 20, 622-632.
- https://doi.org/10.1111/gcb.12367 Yuste, J.C., Nagy, M., Janssens, I.A., Carrara, A., Ceulemans, R., 2005. Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration. Tree Physiol. 25, 609–619.

Contact: Luana Krebs luana.krebs@usys.ethz.ch