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Methods =

- WMC 6**Ca samples collected prior to 2.29.20 were analyzed using a ThermoFisher Scientific Triton Plus Thermal lonization Mass
Spectrometer (TIMS) at the Department of Earth Sciences, Cambridge. For these data we report the average external 20 over the
analysis period on NIST 915B (0.1 %o). BS, LSC, and WMC samples collected post 2.29.20 were analyzed using TIMS at Ohio
State University. For these data we report the average external 2o over the analysis period on NIST 915B (0.04%o).

- BS, LSC, and WMC &'*C were collected using a ThermoFisher Scientific Delta V IRMS equipped with a GasBench at Vanderbilt
University. BS, LSC, and WMC trace element ratios were collected using a Thermo Finnigan iCapQ ICP-MS at Vanderbilt University.

- Rainfall data was acquired from the NOAA National Centers for Environmental Information database for stations proximal

to the cave sites.
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Figure 8. BS profile. Inset shows distribution of LSC host rock 6**Ca data and drip water and
modern calcite data from each drip monitoring site. Drip sites BSw5 and BSw13 is fed by
fracture flow and sites BSw10 and BSw4 are fed by diffuse flow (Oster et al. 2021).
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Figure 9. BS drip water 6**Ca data with daily rainfall amounts from Cookeville, TN.

Gray bars and symbols same as Fig. 5.
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Discussion

- We calculate the fraction of calcium
remaining in solution (f) for drip waters and
modern calcite using Eqg. 1 using a
cave-specific fractionation factor (a_ ..
and assuming the host rock to be the §*Ca
source for infiltrating waters.

)

- Drip water and modern calvite f
values range from 0.5, representing
removal of ~50% of Ca originally
dissolved in the karst water via PCP,

to >1, representing no Ca removal via
PCP (Fig. 10).

Relationship between rainfall, 6**Ca, and
PCP from modern calcite at WMC

- PCP reconstructions from three of four
WMC sites positively correlate with rainfall
rates during the monitoring period.

- This is evidence that PCP reconstructions
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Figure 11. WMC modern calcite 6**Ca values and daily rainfall
rates. Points show the time span of calicte formation. Gray ba
same as Fig. 5.
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from stalagmites can be used to
reconstruct past rainfall variability

- More modern calibration work will help
better constrain cave-specific
relationships between rainfall, $**Ca, and
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Figure 10. 6**Ca and calculated f value for WMC, LSC, and
BS drip waters and modern calcite. Drip water 6*Ca
measurements that are more negative than the
corresponding host rock value generate f values great
than 1, indicating no removal of Ca via PCP during flow.
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Figure 12. WMC modern calcite f values vs. the amount of rain that fell during the interval
when the formed.

Influence of flow path length

- Deeper WMC sites exhibit lower f values, higher
Ba/Ca relative to shallower sites, indicating more PCP
occuring with depth.

- At WMC, 6**Ca covaries with trace element ratios,
perhaps indicating shared PCP control
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Figure 12. WMC water and modern calcite f
values (A) and Sr/Ca data (B) from deeper
(WM(4, 6) and shallower (WMC1, 3) sites. Sr/Ca
vs. 6*Ca (C). Spearman’s rho is 0.6 for drip
waters (p=0.03) and 0.7 for calcite (p=0.02).
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Diffuse flow:
- Less variability in drip rate,
consistent year-round

- Wider range of f values, more

Fracture flow:

- Highly variable drip rate,
seasonally dry

- Tighter range of f values,
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Figure 13. BS water f values (A), 6'°C data (B),
and Mg/Ca data from diffuse flow (BSw4, 10)
and fracture flow (BSw5, 13) sites.
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Evidence of seasonal infiltration?

- Summer LSC drip waters tend to display lower f
values, higher 6'*°C and Mg/Ca, consistent with
drier summer conditions allowing for more PCP.

- A seasonal signal is not evident at WMC.
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Figure 14. LSC and WMC water f values (A), 6'*C
data (B), and Mg/Ca data from drip waters
collected during the arid summer vs. the wet
winter.
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