

Multistability and Transient Response of the Greenland Ice Sheet to Anthropogenic CO₂ Emissions

<u>D. Höning¹</u>, M. Willeit¹, R. Calov¹, V. Klemann², M. Bagge², A. Ganopolski¹

¹Potsdam Institute for Climate Impact Research, Germany ²GFZ Research Centre for Geosciences, Potsdam, Germany

dennish@pik-potsdam.de

EGU 27.04.2023

Melting of the Greenland Ice Sheet

- Melting of Greenland ice sheet (GIS) drives sea level rise: potential for 7m
- But response to temperature rise is nonlinear and slow (kyr timescale)
- Stable states and tipping points?
- Critical cumulative CO₂ emission?

Apusiaajik Glacier, Greenland © NASA/JPL

Methods: Earth System Model CLIMBER-X

- Fully coupled Earth system model of intermediate complexity
- 3D ice sheet model SICOPOLIS applied to GIS
- 1. Explore equilibrium states of GIS
- 2. Transient simulations with different cumulative CO_2 emissions, explore crossing of critical thresholds

Constant CO₂ Simulations: Equilibrium States of the Ice Volume

Pre-Industrial

Link Emission Pulse Scenarios to Equilibrium States

- First tipping point crossed for
 >1000 GtC → 1.8 m sea level rise
- Second tipping point crossed for
 >2500 GtC → ~7m sea level rise

Humanity emitted 500 GtC so far

Mass Loss Rate and Sensitivity to Cumulative Emission

Conclusions

- Tipping points of Greenland ice sheet crossed for anthropogenic emissions >1000 and >2500 GtC
- \rightarrow Committed sea level rise by 1.8 and 7m
- Crossing implies peak melting rates and peak sensitivity to cumulative emission
- Melting of the GIS will take millennia but its path will be decided this century

NASA/JPL

Höning, D. et al., 2023. Multistability and transient response of the Greenland ice sheet to anthropogenic CO_2 emissions. Geophysical Research Letters, 50(6), <u>e2022GL101827</u>

