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Introduction W

@ Complex turbulent dynamical systems appear in many areas.
® Key features:

Strong nonlinearity
High dimensionality
Multiscale structures

© Important Task:

State estimation
Uncertainty quantification
Prediction

@ A suitable model is important.
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Introduction W

Incomplete physical
understanding of nature

Erorr The purely knowledge-based
modeling approaches

Inadequate model
resolution

+

A great amount of data } The data-driven algorithm V ’
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Introduction W

Existing Methods:
@ Based on constrained optimizations
@® Determine regularization parameter in advance

© A certain sparse identification technique is used in the optimization
procedure

@ Sensitive to noises

@ Hard to identify the physical meaning
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Introduction W

Causality-Based Methods(Chen and Zhang [2022]):
@ Use information theory to clarify physical meaning
@® Estimating parameters via quadratic optimization formula
©® Robust to stochastic noises

@ Applicable to the situation with partial observations
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Overview of the Causality-Based Learning Algorithm

Available Information : Learning Algorithm

Causal Inference
(via Information Theory)

Xty KXo Yis Yoo Xk, X2, . Parameter Estimation
i ax
Partial Observations i % v Estimating the coefficients of the
: o _ , v " selected functions from causal
v X1 """*’W\/""‘WJV“‘"‘ dt inference via a simple maximum
H dy likelihood estimation
V X2 P\ pyeid Tar T ’ v
XV o ]| - .oy

at

X Yo ™

Library of Functions : '

Conditional Sampling
(with Analytical Formulae)

A4

X1, X2, Y1, Y2,
X1 X, X2, X5,

X1, X Y1, X1 Y2, X2,

........... Truth — Sampled

The algorithm has three components, we use the iterative method to learn the
underlying dynamics and stochastic parameterization.

9/37



Content W

Introduction

Overview of the Causality-Based Learning Algorithm

Conditional Sampling
Causal Inference
Parameter Estimation

A simple Example for Proof-of-Concept

A High-Dimensional System with Stochastic Parameterizations

® Summary

10 /37



Conditional Sampling \/

The general stochastic parameterization structure:

% = [AO(X,t) + Al(x,t)Y(t)] +B1(X, )W (t), (1a)
% = [20(%,6) +a1(X, )Y (1)] + ba(X, )W (1), (1b)

where X is the observed state variable, and Y is the stochastic parameterization.
X could have arbitrary nonlinearity while Y is conditionally linear once X is given.
But (1b) is overall highly nonlinear so Y could create non-Gaussian features.

® Given this conditionally Gaussian structure, we can use the closed analytic
formula to sample the trajectory of Y that could significantly reduce the
computational cost.

® The conditional sampling is based on the Bayesian framework.
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Conditional Sampling \/

Many complex nonlinear systems already fit into this framework of (1), Chen
Majda 2018 Entropy, Chen, Li and Liu, 2022 Chaos.

® Physics-constrained nonlinear stochastic models.

Examples: the noisy versions of Lorez models, Charney-DeVore flows, and
the paradigm model for topographic mean flow interactions.

® Stochastically coupled reaction-diffusion models in neuroscience and ecology.
Examples: the FitzHugh-Nagumo models and the SIR epidemic models.

® Multi-scale models in turbulence and geophysical flows.
Examples: the Boussinesq equations and rotating shallow water equation.
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Conditional Sampling \/

The purpose of stochastic parameterization:
e NOT to recover the exact dynamics of the unobserved variables. X

® Recover the statistic feedback from the unobserved variable Y to the
observed variable X. ¢
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Causal Inference W

X
-3
d(ftl 11 - &Sm f1(z1(t), ..., 2n (1), 1)
s | & §o,m fa(z1(t),...,2n(t), 1)
e @
o En1 EN,M I (z1(), ..., 2N (1), 1)
=ExF(Z(t),t),

where E is the coefficient matrix to be estimated, Z is the state variable and f; is
the candidate function in the function library.

GOAL: Determine the non-zero entries of this matrix Z.

METHOD: A new concept introduced here is causation entropy.
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Causal Inference W

The causation entropy Cy, .., |F\f,,) is defined as follows,

CrimsznF\f] = H(nl [F\fi]) = H(znl [F\fin] s fim) 3)
= H(zn| [F\fm]) — H(z,|F).

where H(-|-) is the conditional entropy.

If such a causation entropy is zero (or practically nearly zero), then f,,(t) does
not contribute any information to % and the associated parameter §,, ., is set
to be zero.
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Causal Inference W

Practical calculation of the causation entropy:

= %m(det(ny)) — %ln(det(Ry)) (4)
— 5 Infdet(Rixy2)) + 5 Infdet(Ry ),

where Ry 7 denotes the covariance matrix of the state variables (X,Y, Z)T and
similar for other covariances.

Problem: How about non-Gaussian distribution?

® The primary goal is not to obtain the exact value of causation entropies, we
want to find if the causation entropy is zero or not.

® Usually if a significant causal relationship is detected in the higher order
moments, then very likely it exists in the Gaussian approximation as well.
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Parameter Estimation W

Parameter estimation via a simple maximum likelihood estimation

© = argmin £(O). (5)

Physics constraints, together with other constraints, can in general be represented

in the following way:
HO =g, (6)

where H and g are constant matrices.

To incorporate these constraints, the Lagrangian multiplier method is applied,

L=L(O;)), O =argminL(O;)\). (7)
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A Simple Example for Proof-of-Concept Y

The first test example is a low-dimensional chaotic system, known as the Lorenz
1984 (L-84) model,

d .

g :—(y2+22)—a(a:—f)+awWw,

dy . 8
E:—bxz—i—xy—y—l—g—i—aywy, (8)
d .

ﬁszy—!—xz—z—!—azwz.

In (8), the zonal flow x represents the intensity of the mid-latitude westerly wind
current, and a wave component exists with y and z representing the cosine and
sine phases of a chain of vortices superimposed on the zonal flow.

Here y and z are observed variables, and x is the unobserved variable.
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A Simple Example for Proof-of-Concept Y

The library of functions:

2 2
Yy, 2 Y, 2,5 Yz, 17 z, 1Y, Tz,

(9)

xy?, 222, zyz.

A random and complicated initial model structure is utilized to start the iterative
algorithm,

d .

=V =424~ P+ oW,

d .
dz:—y—2y2+z2+1+(—y—sz—yz>x+oyWy» (10)
d .
?::—z+z2—yz+(8y+z+22)$+0sz~
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A Simple Example for Proof-of-Concept Y

The identified model has the same model structure as the truth,

% = ngny + 0% 2% + 0% + 0% + 0, W,,

% = ijzacz—kﬁgya:y%—%y—&—@i’ —|—0yWy, (11)

dz z z z z T

Frie 07,2y + 05,02 + 60224607 + o, W..

0 oy 0z 05y 07, 0y,
Truth -0.2500 | -1.0000 | -1.0000 | -1.0000 | -1.0000 | -4.0000
Identified | -0.2680 | -0.9987 | -1.0076 | -0.9993 | -1.0061 | -3.9956

0%, 0%y 0% o1 01 0%
Truth 1.0000 | 4.0000 | 1.0000 | 2.0000 | 1.0000 | 0.0000
Identified 0.9993 | 3.9956 | 1.0061 | 2.0223 | 0.9939 | 0.0053

Table: Comparison of the parameters in the true system (8) and those in the
identified model.
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A Simple Example for Proof-of-Concept

(a) Sampled trajectories of x in iterations
T T T

3F =
2
1
ol
kb 1 1 1 1 | ,
0 10 20 30 40 50 60
t 1stiter. ——5stiter. 50 st iter.
—110 stiter. —Truth
(b) Frobenius norm of C - C true
€3 T T T T T T T
(=} ' '
I H i
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Lo+ :
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iteration
(c) Parameter b
T T T T
Py S 1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 110 120
iteration

Figure: Iterative procedure of learning the L-84 model with partial observations
(y,2)".
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A High-Dimensional System with Stoch Parameterizations

The two-layer Lorenz 1996 (L-96) model is a conceptual representation of
geophysical turbulence that is commonly used as a test for data assimilation and
parameterization in numerical weather forecasting.

du, hei &
= Wit (Wi—g — Uiy1) — Ui + f — 7 ;’Uz‘,j
+ oWy, i=1,...,1, (12a)
dv; 5 he;
% = —bcivi j4+1 (Ui,j+2 - Ui,j—l) — G5 + Tcul
tou W, J=1,...,J, (12b)

where I denotes the total number of large-scale variables and J is the number of
small-scale variables corresponding to each large-scale variable.
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A High-Dimensional System with Stoch Parameterizations

For the convenience of discussing the behavior of the two layers, a new single
variable w; = ijl v; 5 is introduced, which describes the total variabilities in
the second layer.
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A High-Dimensional System with Stoch Parameterizations

Model Trajectories PDFs ACFs
Regime I

05
u 1
10

o 5 10 5 o 5 10 0o 1 2 3

Two dynamical regimes are considered here as the truth. They share most of the
parameters:

I=20, J=4, ¢ =2+0.7cos(2mi/I), b=2, f=4, o, =0.05,

(13)
but they are differed by h and o, ;:
Regime I: h=4.0 and ov,;; = 1.00 (14)
Regime II: h=15 and oy, ; = 0.05.
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A High-Dimensional System with Stoch Parameterizations

The set of the candidate functions for w; is then given by a vector F,,,, which
includes 23 terms:
o ) i ) 2 2 2 2
Uiy WUi—15 Ui—25 Ui41, Ui42, Uy, U1y U; oy Uiy,
2
Ujtoy Uithi—1, Uili—2, Uilitl, UiUi42, Ui—1Ui—2, Ui—1Ui+1, (15)
Ui 1Uig2, Ui 2Uit1, Ui 2Uit2, Uip1Uit2, L, Wi, Uw;.

Only 4 terms are included in the library for each w;, given by another vector F,,,,

Ug, uzzﬂ 17 w;. (16)
It's obvious that

F, cF, =T
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Example of Process Diagram
(a) Sample equations

(b)
-mmmmmm

K = -uu 3 +Uals 11 0 0 1 o0 -1
dus 2 v -1 0 1 0 0 1 o0
qdomw w +ui U2l

-1 1 0 0o 1 o0 -1
%" = -Us+n +uf “Usty “Wila

Visualization of Coefficient matrix

1
05
0
05
Uy U

A High-Dimensional System with Stoch Parameterizations

0 1
-1 0
0 -1

(d) Coefficient Matrlx of the Startlng Model

Figure: Using a visualization diagram to represent the identified model structure
and parameters.
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A High-Dimensional System with Stoch Parameterizations

(b) Initial Guess (¢) Identified Model

A

e 'P...s"'
—~* .t
X -~

Figure: ldentifying the two-layer L-96 model in Regime I. Different columns show
the truth, the initial guess, and the identified model.
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A High-Dimensional System with Stoch Parameterizations

001
0.008
0.006
0.004
0.002
o

(a) Initial Causation Entropy Matrix of u

T T Ty Ty Tl

Additional Terms | ‘Truth

(c) High Threshold

Coefficients
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A High-Dimensional System with Stoch Parameterizations

(b) High Threshold (c) Low Threshold
u w

Coefficients
u
4
2
0
2
TS Tlﬂ TIS TZB

Figure: Similar to Figure 4 but for Regime II. Note that instead of repeating the
column for the initial guess, the column for the high threshold case » = 0.01 is
shown instead.
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® A causality-based learning algorithm is developed.

® The method exploits the causation entropy to pre-determine the candidate
functions.

® The closed analytic formula of conditional sampling is used.

® A quadratic optimization problem is solved for parameter estimation via
maximum likelihood estimates

® Physics constraints and localization techniques are further incorporated into
the learning algorithm

35 /37



Nan Chen and Yinling Zhang. A causality-based learning approach for discovering
the underlying dynamics of complex systems from partial observations with
stochastic parameterization. arXiv preprint arXiv:2208.09104, 2022.

36 /37



Thank you for listening!

Email: zhang24470wisc.edu
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