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Introduction

1 Complex turbulent dynamical systems appear in many areas.

2 Key features:

• Strong nonlinearity
• High dimensionality
• Multiscale structures

3 Important Task:

• State estimation
• Uncertainty quantification
• Prediction

4 A suitable model is important.
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Introduction

A great amount of data

Inadequate model 
resolution

Incomplete physical 
understanding of nature

The purely knowledge-based 
modeling approaches  

The data-dr iven algor ithm  ?

Erorr

+
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Introduction

Existing Methods:

1 Based on constrained optimizations

2 Determine regularization parameter in advance

3 A certain sparse identification technique is used in the optimization
procedure

4 Sensitive to noises

5 Hard to identify the physical meaning
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Introduction

Causality-Based Methods(Chen and Zhang [2022]):

1 Use information theory to clarify physical meaning

2 Estimating parameters via quadratic optimization formula

3 Robust to stochastic noises

4 Applicable to the situation with partial observations
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Overview of the Causality-Based Learning Algorithm

Causal Inference 
(via Information Theory)

Partial Observations

Library of Functions

Conditional Sampling 
(with Analytical Formulae)

Parameter Estimation

Available Information Learning Algorithm

Estimating the coefficients of the 
selected functions from causal 

inference via a simple maximum 
likelihood estimation 

Iteration
Localization of state variable 

dependence

Physics constraint with energy 
conserving nonlinearity

The algorithm has three components, we use the iterative method to learn the
underlying dynamics and stochastic parameterization.
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Conditional Sampling

The general stochastic parameterization structure:

dX

dt
=

[
A0(X, t) +A1(X, t)Y(t)

]
+B1(X, t)Ẇ1(t), (1a)

dY

dt
=

[
a0(X, t) + a1(X, t)Y(t)

]
+ b2(X, t)Ẇ2(t), (1b)

where X is the observed state variable, and Y is the stochastic parameterization.
X could have arbitrary nonlinearity while Y is conditionally linear once X is given.
But (1b) is overall highly nonlinear so Y could create non-Gaussian features.

• Given this conditionally Gaussian structure, we can use the closed analytic
formula to sample the trajectory of Y that could significantly reduce the
computational cost.

• The conditional sampling is based on the Bayesian framework.
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Conditional Sampling

Many complex nonlinear systems already fit into this framework of (1), Chen
Majda 2018 Entropy, Chen, Li and Liu, 2022 Chaos.

• Physics-constrained nonlinear stochastic models.

Examples: the noisy versions of Lorez models, Charney-DeVore flows, and
the paradigm model for topographic mean flow interactions.

• Stochastically coupled reaction-diffusion models in neuroscience and ecology.

Examples: the FitzHugh-Nagumo models and the SIR epidemic models.

• Multi-scale models in turbulence and geophysical flows.

Examples: the Boussinesq equations and rotating shallow water equation.
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Conditional Sampling

The purpose of stochastic parameterization:

• NOT to recover the exact dynamics of the unobserved variables.

• Recover the statistic feedback from the unobserved variable Y to the
observed variable X.
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Causal Inference

Z =

[
X
Y

]


dz1
dt
dz2
dt
...

dzN
dt

 =


ξ1,1 · · · ξ1,M
ξ2,1 · · · ξ2,M
...

. . .
...

ξN,1 · · · ξN,M




f1 (z1(t), . . . , zN (t), t)
f2 (z1(t), . . . , zN (t), t)

...
fM (z1(t), . . . , zN (t), t)


= Ξ× F (Z(t), t) ,

(2)

where Ξ is the coefficient matrix to be estimated, Z is the state variable and fi is
the candidate function in the function library.

GOAL: Determine the non-zero entries of this matrix Ξ.

METHOD: A new concept introduced here is causation entropy.
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Causal Inference

The causation entropy Cfm→zn|[F\fm] is defined as follows,

Cfm→zn|[F\fm] = H(zn| [F\fm])−H(zn| [F\fm] , fm)

= H(zn| [F\fm])−H(zn|F).
(3)

where H(·|·) is the conditional entropy.

If such a causation entropy is zero (or practically nearly zero), then fm(t) does
not contribute any information to dzn

dt and the associated parameter ξn,m is set
to be zero.
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Causal Inference

Practical calculation of the causation entropy:

CZ→X|Y = H(X|Y )−H(X|Y,Z)

= H(X,Y )−H(Y )−H(X,Y, Z) +H(Y, Z)

=
1

2
ln(det(RXY ))−

1

2
ln(det(RY ))

− 1

2
ln(det(RXY Z)) +

1

2
ln(det(RY Z)),

(4)

where RXY Z denotes the covariance matrix of the state variables (X,Y, Z)T and
similar for other covariances.

Problem: How about non-Gaussian distribution?

• The primary goal is not to obtain the exact value of causation entropies, we
want to find if the causation entropy is zero or not.

• Usually if a significant causal relationship is detected in the higher order
moments, then very likely it exists in the Gaussian approximation as well.
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Parameter Estimation

Parameter estimation via a simple maximum likelihood estimation

Θ̂ = argminL(Θ). (5)

Physics constraints, together with other constraints, can in general be represented
in the following way:

HΘ = g, (6)

where H and g are constant matrices.

To incorporate these constraints, the Lagrangian multiplier method is applied,

L = L(Θ;λ), Θ̂ = argminL(Θ;λ). (7)
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A Simple Example for Proof-of-Concept

The first test example is a low-dimensional chaotic system, known as the Lorenz
1984 (L-84) model,

dx

dt
= −(y2 + z2)− a(x− f) + σxẆx,

dy

dt
= −bxz + xy − y + g + σyẆy,

dz

dt
= bxy + xz − z + σzẆz.

(8)

In (8), the zonal flow x represents the intensity of the mid-latitude westerly wind
current, and a wave component exists with y and z representing the cosine and
sine phases of a chain of vortices superimposed on the zonal flow.

Here y and z are observed variables, and x is the unobserved variable.

21 / 37



A Simple Example for Proof-of-Concept

The library of functions:

y, z, y2, z2, yz, 1, x, xy, xz,

xy2, xz2, xyz.
(9)

A random and complicated initial model structure is utilized to start the iterative
algorithm,

dx

dt
= y2 − z2 + 2 + (y2 − z2)x+ σxẆx,

dy

dt
= −y − 2y2 + z2 + 1 + (−y − 8z − yz)x+ σyẆy,

dz

dt
= −z + z2 − yz + (8y + z + z2)x+ σzẆz.

(10)
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A Simple Example for Proof-of-Concept

The identified model has the same model structure as the truth,

dx

dt
= θxyyy

2 + θxzzz
2 + θxxx+ θx1 + σxẆx,

dy

dt
= θyxzxz + θyxyxy + θyyy + θy1 + σyẆy,

dz

dt
= θzxyxy + θzxzxz + θzzz + θz1 + σzẆz.

(11)

θxx θyy θzz θxyy θxzz θyxz
Truth -0.2500 -1.0000 -1.0000 -1.0000 -1.0000 -4.0000
Identified -0.2680 -0.9987 -1.0076 -0.9993 -1.0061 -3.9956

θyxy θzxy θzxz θx1 θy1 θz1
Truth 1.0000 4.0000 1.0000 2.0000 1.0000 0.0000
Identified 0.9993 3.9956 1.0061 2.0223 0.9939 0.0053

Table: Comparison of the parameters in the true system (8) and those in the
identified model.
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A Simple Example for Proof-of-Concept
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Figure: Iterative procedure of learning the L-84 model with partial observations
(y, z)T.
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A High-Dimensional System with Stoch Parameterizations

The two-layer Lorenz 1996 (L-96) model is a conceptual representation of
geophysical turbulence that is commonly used as a test for data assimilation and
parameterization in numerical weather forecasting.

dui

dt
= −ui−1 (ui−2 − ui+1)− ui + f − hci

J

J∑
j=1

vi,j

+ σuiẆui , i = 1, . . . , I, (12a)

dvi,j
dt

= −bcivi,j+1 (vi,j+2 − vi,j−1)− civi,j +
hci
J

ui

+ σvi,jẆvi,j , j = 1, . . . , J, (12b)

where I denotes the total number of large-scale variables and J is the number of
small-scale variables corresponding to each large-scale variable.
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A High-Dimensional System with Stoch Parameterizations

For the convenience of discussing the behavior of the two layers, a new single
variable wi =

∑J
j=1 vi,j is introduced, which describes the total variabilities in

the second layer.
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A High-Dimensional System with Stoch Parameterizations
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Two dynamical regimes are considered here as the truth. They share most of the
parameters:

I = 20, J = 4, ci = 2 + 0.7 cos(2πi/I), b = 2, f = 4, σui
= 0.05,

(13)
but they are differed by h and σvi,j :

Regime I: h = 4.0 and σvi,j = 1.00

Regime II: h = 1.5 and σvi,j = 0.05.
(14)
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A High-Dimensional System with Stoch Parameterizations

The set of the candidate functions for ui is then given by a vector Fui
, which

includes 23 terms:

ui, ui−1, ui−2, ui+1, ui+2, u2
i , u2

i−1, u2
i−2, u2

i+1,

u2
i+2, uiui−1, uiui−2, uiui+1, uiui+2, ui−1ui−2, ui−1ui+1,

ui−1ui+2, ui−2ui+1, ui−2ui+2, ui+1ui+2, 1, wi, uiwi.

(15)

Only 4 terms are included in the library for each wi, given by another vector Fwi ,

ui, u2
i , 1, wi. (16)

It’s obvious that
Fwi

⊂ Fui
:= T
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A High-Dimensional System with Stoch Parameterizations

Coefficient Matrix

Visualization of Coefficient matrix

Coefficient Matrix of the Starting  Model 

Example of Process Diagram

u w

(a)
(b)

(c)

(d)

Sample equations

Figure: Using a visualization diagram to represent the identified model structure
and parameters.
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A High-Dimensional System with Stoch Parameterizations

Figure: Identifying the two-layer L-96 model in Regime I. Different columns show
the truth, the initial guess, and the identified model.
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A High-Dimensional System with Stoch Parameterizations

Initial Causation Entropy Matrix of u

r = 0.001

Additional Terms Truth 

r = 0.01

(a)

Low Threshold(b) High Threshold(c)
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A High-Dimensional System with Stoch Parameterizations

Figure: Similar to Figure 4 but for Regime II. Note that instead of repeating the
column for the initial guess, the column for the high threshold case r = 0.01 is
shown instead.
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Summary

• A causality-based learning algorithm is developed.

• The method exploits the causation entropy to pre-determine the candidate
functions.

• The closed analytic formula of conditional sampling is used.

• A quadratic optimization problem is solved for parameter estimation via
maximum likelihood estimates

• Physics constraints and localization techniques are further incorporated into
the learning algorithm
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Q&A

Thank you for listening!

Email: zhang2447@wisc.edu
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