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Abstract: Seismic velocity is the geophysical property that has a key role in characterizing dynamic
processes and the state of the stress around the faults, providing valuable information regarding
the change in the tectonic regime. The stress in the crust is an important indicator of the possible
occurrence of a major earthquake, and the variation of seismic velocities, in time, can provide a
clearer picture on the tectonic processes taking place in the region. In the crust, velocities change
before, during, and after earthquakes through several mechanisms related to fault deformations, pore
pressure, stress changes, and recovery processes. In this study, we investigate the possible correlation
between the changes of seismic velocities (Vp/Vs) in time and the occurrence of moderate size crustal
and intermediate depth earthquakes from the Vrancea region. Our findings show that there are no
significant variations in Vp/Vs for the intermediate depth earthquakes, while crustal events have
decreased seismic activity prior to the main earthquake and no high Vp/Vs anomalies. Our results
indicate key aspects, and such analyses should be carried out in real-time to continuously explore
any unusual pattern pointed out by the seismic velocity changes. Vp/Vs and their standard errors
can also be used to describe seismic activity patterns that shape the tectonic evolution of the area.
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1. Introduction

The tectonic units that control the seismic activity in Romania include alpine and
pre-alpine formations. They come into contact along major crustal faults, generating
earthquakes in the crust. Crustal seismicity consists of events with small and moderate
magnitudes (Mw < 6.5), which nevertheless show a destructive potential, especially at
the local level [1,2]. Crustal earthquakes are especially distributed along the Eastern and
Southern Carpathians, in the North Dobrogean Orogen, the Moesian Platform, and the
Pannonian Basin [1,3–5]. In contrast to the crustal seismicity dispersed mostly along
the Carpathian Orogen (Figure 1), the seismic activity generated at the mantle level is
distributed in a limited volume beneath the Vrancea region, located at the bend of the
Eastern Carpathians, at the junction of at least three plates [6].

The mechanisms responsible for the generation of mantle earthquakes at the bending
of the Eastern Carpathians are still intensely debated, with the most common being slab
retreat and roll-back [7,8], delamination [9–11], slab-detachment [12], detachment and
delamination of the lithospheric fragment [13,14], and gravitational instability [15,16].
Earthquakes generated at intermediate depths in the Vrancea region release the largest
amount of energy, which implies the largest degree of deformation (3.5 × 10−7 year−1),
with one to six earthquakes with Mw > 7.0 recorded every century [1].

Previous studies emphasized that the earthquake generation processes have a cyclic
evolution [17], and the last strong intermediate depth earthquakes, according to the Roma-
nian earthquake catalogue (ROMPLUS) [18], occurred in the Vrancea region in the previous
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century (10 November 1940, 4 March 1977, 31 August 1986, 30 May 1990). As a result, there
is high probability that a high magnitude earthquake will occur in the Vrancea region in
the near future.
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such events, based either on scientific or, sometimes, empirical arguments [19–25]. These 
methods revealed different success rates, with the most notable being that for the 4 Feb-
ruary 1975 earthquake in China [26]. 

In the previously mentioned context and, at the same time, taking advantage of the 
fact that the Romanian Seismic Network is in continuous expansion throughout the last 
decade (Figure 1), a significant amount of data is offered [27]. In this study, we aim to 
analyze the temporal variation of seismic velocities using the recordings of the stations 
installed in Vrancea and adjacent areas. 

Seismic velocities play a key role in characterizing dynamic processes and the state 
of faults, offering additional information about changes in tectonic stress, being an im-
portant indicator of the possible occurrence of an earthquake, and also providing better 
insights into the evolution of tectonic processes [28–34]. 

In the crust, velocities change before, during, and after earthquakes through several 
mechanisms related to, for example, fault deformations, pore pressure, changes in stress 
state (e.g., pressure perturbation), and recovery processes [28–30]. Previous studies [31–
33] emphasized precursor variations in seismic velocity, which seismologists perceive as 
a potential forecast approach [34]. 

Laboratory experiments [35] show that the velocities of both compression and shear 
waves decrease significantly before the occurrence of earthquakes with normal or reverse 
fault mechanisms, and no significant changes occur for earthquakes with a strike-slip 
mechanism. This explains the contradictory conclusions in the seismic velocity variations 
of earthquake forecast. For strike-slip earthquakes, the stress level is generally reduced, 

Figure 1. Distribution of seismic stations and epicenters associated with crustal (Mw > 2.0) and
intermediate depth (Mw > 3.5) earthquakes, selected from the ROMPLUS catalogue [18] between
January 2015 and October 2020. The main tectonic features are also displayed. The abbreviations are
as follows: VR—Vrancea region, FB—Focsani Basin, NDO—North Dobrogean Orogen.

To minimize human and economic losses caused by the large magnitude earthquakes,
over time the scientific community has developed numerous methods to forecast such
events, based either on scientific or, sometimes, empirical arguments [19–25]. These meth-
ods revealed different success rates, with the most notable being that for the 4 February
1975 earthquake in China [26].

In the previously mentioned context and, at the same time, taking advantage of the
fact that the Romanian Seismic Network is in continuous expansion throughout the last
decade (Figure 1), a significant amount of data is offered [27]. In this study, we aim to
analyze the temporal variation of seismic velocities using the recordings of the stations
installed in Vrancea and adjacent areas.

Seismic velocities play a key role in characterizing dynamic processes and the state of
faults, offering additional information about changes in tectonic stress, being an important
indicator of the possible occurrence of an earthquake, and also providing better insights
into the evolution of tectonic processes [28–34].

In the crust, velocities change before, during, and after earthquakes through several
mechanisms related to, for example, fault deformations, pore pressure, changes in stress
state (e.g., pressure perturbation), and recovery processes [28–30]. Previous studies [31–33]
emphasized precursor variations in seismic velocity, which seismologists perceive as a
potential forecast approach [34].

Laboratory experiments [35] show that the velocities of both compression and shear
waves decrease significantly before the occurrence of earthquakes with normal or reverse
fault mechanisms, and no significant changes occur for earthquakes with a strike-slip
mechanism. This explains the contradictory conclusions in the seismic velocity variations
of earthquake forecast. For strike-slip earthquakes, the stress level is generally reduced,
generating dilations or small or no velocity variations, while for the other types of earth-
quakes, the stress level is high, which produces large variations in seismic velocities [34].
However, none of the two major earthquakes present strike-slip faulting. A reverse fault
plane solution was determined for the subcrustal earthquake [36], which is specific for
intermediate depth Vrancea earthquakes [1,36] (For the earthquake that occurred at the
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limit of the crust–mantle discontinuity, the previous studies [36,37] indicated a normal fault
mechanism). On the other hand, anisotropy could provide another possible explanation,
with laboratory experiments [38] demonstrating that rock samples under tension show
considerable anisotropy caused by dilatation.

2. Methodology Used for Monitoring the Variation of Seismic Velocities in Time

Previous studies [34] investigated either the time variation of the Vp/Vs ratio, deter-
mined using the Wadati diagram [39] method, or the temporal variations of the seismic
velocities, determined from the cross-correlations of ambient noise [25]. In this study, the
Wadati method was applied to monitor the time variation of seismic velocities. The Wadati
diagram determined for a seismic event that consists of the representation (Figure 2) of the
absolute arrival time of the primary wave (P) as a function of the difference in the arrival
times (in seconds) of the secondary (S) and primary waves (P). The time at the origin is
given by the point where the extension of the regression line of the selected determination
intersects the abscissa, and the ratio Vp/Vs is determined from Equation (1):

Ts − Tp
Tp

=
Vp
Vs

− 1 (1)

where Ts and Tp represent the arrival times of the P and S waves, respectively, and Vp and
Vs represent the velocities for the same types of waves.
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Figure 2. Example of Wadati diagram of a moderate sized (ML = 5.7) earthquake that occurred on 22
November 2014 at the northeastern edge of the Focsani Basin (Marasesti area, see [37]). The slope of
the linear fit indicates the correlation of P to S-phase velocities, as a = Vp/Vs − 1. The intersection
between the linear fit and P arrival time indicates the origin time of the earthquake (t0).

The previous studies performed in China [34] indicated a generally normal distribution
of Vp/Vs ratios, with a mean value of 1.73 and a standard deviation standard of 0.05. They
considered high Vp/Vs anomalies the values that were greater than the average Vp/Vs,
including standard deviation, and small anomalies were the ones that were lower than the
average, including standard deviations. We follow the same procedure as [34], computing
an average Vp/Vs for both major earthquakes and classifying small anomalies as values
less than the average, including standard deviations and high anomalies as values greater
than the average plus standard deviations.

3. Analysis of the Temporal Variation of Vp/Vs Ratios for Two Moderate Earthquakes
That Occurred at the Bending of the Southeastern Carpathians

In the following sections, we investigate the temporal variation of Vp/Vs ratios, using
the Wadati diagram approach, for two earthquakes: (i) the intermediate depth (H~147 km)
earthquake produced in the Vrancea region on 28 October 2018 (00:38, GMT) with a local
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magnitude (ML) of 5.8, and (ii) the crustal earthquake generated at the northeastern edge
of the Focsani Basin (50 km relative to Vrancea) on 22 November 2014 (19:14, GMT), at the
limit of the crust–mantle discontinuity (H~40 km), ML = 5.7, according to the ROMPLUS
catalogue [18,40]. Previous investigations performed in this area placed the Moho at a
maximum depth of 47 km [41,42] The epicenters of both selected earthquakes and the
seismic station distribution in the epicentral region are shown in Figure 3.
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Figure 3. Epicenters of the selected earthquakes and seismic station distribution in the epicentral
region. The symbols of the two earthquakes are colored according to depth, and their size is
proportional to magnitude. Cities near the epicenters are represented with black symbols. The inset
shows the location of the study region on the map of Romania.

3.1. Temporal Variation of Vp/Vs Ratios Determined for the Subcrustal Earthquake

In the following, we investigate the variation of the Vp/Vs ratios for a time period
of more than one year, seven months before and six months after the occurrence of the
moderate magnitude (ML = 5.8) subcrustal earthquake (H = 147 km) in the Vrancea region
(28 October 2018; 00:38, GMT). The data consist of seismic bulletins determined by the Inter-
national Seismological Center (ISC) for intermediate depth earthquakes (60 ≤ H(km) < 170)
generated in the Vrancea area between 1 April 2018 and 30 April 2019, with ML ≥ 2.5. The
number of selected events was 209, with 6 earthquakes of ML ≥ 4 occurring within the ana-
lyzed time period. Figure 4 depicts the distribution of epicenters and hypocenters for the
selected events. It is worth noting that, during the selected time period, the seismic activity
is more intense in the lower lithospheric segment (Figure 4), a feature also highlighted by
previous studies [43].
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Figure 4. (a). Distribution of epicenters (size function of magnitude and color, according to depth)
associated with subcrustal earthquakes (ML ≥ 2.5) produced during the period 1 April 2018–30 April
2019. The vertical profile A–A’ is shown in red. The inset shows the location of the study region on
the map of Romania. (b) Vertical cross-sections along the A–A’ profile and hypocenters distribution
within a distance of ±1.0 deg. relative to the same profile.

For the selected events, the Vp/Vs ratios were calculated, using the Wadati diagram
method, based on the solutions from the seismic bulletins. To increase the investigation
accuracy, only the events whose location errors were well constrained were selected. As
a result, we only included events with low values of root mean square of the travel time
residuals (RMS < 0.9) and a high coefficient for determining the regression slope for the
Wadati diagram (R2 ≥ 0.95) in the study. In addition, the minimum number of station pairs
required to determine Vp/Vs was set at 5, decreasing the number of events to 170. For
events that were excluded due to the imposed conditions, the seismic bulletins calculated
within the Romanian Data Center (RONDC) were considered. If their solutions did not meet
the criteria, the events were manually relocated using IASP91, the Earth reference velocity
model [44], and the LocSAT method [45] embedded within the ANTELOPE software
version 5.7 (http://ww.brtt.com/software.html (accessed on 12 March 2021)), which is
routinely used for location purposes within the RONDC. Finally, the Vp/Vs ratios were
determined for the 209 events (Figure 4).

Figure 5 depicts the Vp/Vs distribution function of the selected earthquakes, as well
as their distribution, according to the depth and the number of phases used to estimate the

http://ww.brtt.com/software.html
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location. We notice a significant variation in Vp/Vs with depth. This pattern seems to be
caused by low magnitude earthquakes that occur at different depths and are only recorded
by a few stations. We also notice that earthquakes located with a high number of seismic
phases have higher Vp/Vs stability.
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(middle), and number of seismic phases used in the location process (bottom).

These variations could also be attributed to the structural inhomogeneities associated
with the specified depth interval, leading to the attenuation of the seismic signal and
implicitly reducing the number of detected phases. On the other hand, in a first stage, no
limitation was imposed for the epicentral distance being used in the analysis of the stations
located at large distances (∆ > 100).
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At this stage, the average value determined for the Vp/Vs ratios was 1.746, with a
standard deviation of 0.057. This value is slightly higher compared to the standard value
of 1.73 mentioned by previous studies [46]. Based on the standard deviation, we consider
the values between 1.689 and 1.803 to be the normal range of variation (of Vp/Vs), while
values exceeding these limits are considered anomalies.

In order to check if the data from stations located at large epicentral distances can
introduce certain influences in the variation of Vp/Vs ratios, in the second step, we removed
the data from stations located at epicentral distances of more than 1 degree (~111 km)
and recalculated Vp/Vs only using the phases provided by the stations deployed in the
epicentral area (Figure 3). In this scenario, the average value determined for the Vp/Vs
ratios was 1.742, with a standard deviation of 0.057. For comparison, in Figure 6, we
represented the variation of Vp/Vs over time, based on the values obtained in the first
stage, for the scenario where all available data were used, respectively, for the instance
where only the stations located in the epicentral region (∆ ≤ 1◦) were used.
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Figure 6. Vp/Vs variation over time, in the period 1 April 2018–30 April 2019, (a) determined using
data from stations located at epicentral distances less than 1-degree and (b) determined with all
available data. Significant earthquakes produced during the specified time period are marked with
red vertical lines.

The Vp/Vs distribution in Figure 6 was plotted over time together, with the normal
variation limits (Vp/Vsmin and Vp/Vsmax) derived based on the value of the standard
deviation of Vp/Vs, which was then added and subtracted, respectively, from the mean
value of Vp/Vs.

3.2. Temporal Variation of Vp/Vs Ratios Determined for the Crustal Earthquakes

We examined Vp/Vs variations over more than a year, between 1 April 2014 and 30
June 2015, using the same methodology as for the subcrustal earthquakes. The selected
time period corresponds to the largest earthquake, which occurred on 22 November 2014
(ML = 5.7; H~40 km) during the period of instrumental recordings in the Focsani Basin
area (close to the Marasesti city). In order to check if there are any limitations due to the
depth of the source, we extended the analysis using the method described in Section 3.1
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(variation of Vp/Vs based on the Wadati diagram) to the crustal earthquakes that occurred
in the study region in the selected time interval.

The data used consisted of seismic bulletins of crustal earthquakes (0 ≤ H (km) ≤ 50)
produced in the epicentral region during the period 1 April 2014–30 June 2015, selected for
a distance of 0.5 degrees around the epicenter of the main earthquake (45.8683–27.1517).
Based on the specified criteria, 482 earthquakes were initially selected, with 4 earthquakes
of moderate magnitudes (ML ≥ 4). Following the initial selection, criteria RMS < 0.9 and
R2 ≥ 0.95, the final number of selected events was reduced to 440. Their seismic bulletins
were downloaded from the ISC. The epicenter distribution of the crustal events colored
function of the time of occurrence relative to the main earthquake (22 November 2014; 19:14
GMT), as well as the distribution of the epicenters of the subcrustal earthquakes generated
in the Vrancea region in the same period, as shown in Figure 7.
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Figure 7. Epicenter distribution of selected earthquakes, colored according to the time of occurrence
relative to the main earthquake (22 November 2014; 19:14 GMT). Cold colors depict earthquakes
that occurred before the main event, whereas warm colors show the earthquakes produced after
the main event. The epicenters of subcrustal earthquakes (H > 50 km) are also depicted; those that
occurred prior to the main earthquake are indicated in cyan, while those that occurred after the
main earthquake are marked in black. Black dotted lines mark the area close to the Marasesti city
(left). A zoom in showing the epicenters distribution of crustal earthquakes close to the Marasesti
city (right). The size of the symbols is proportional to the magnitude of the earthquake.

Figure 7 highlights at least two notable aspects. The first is given by the distribution
of epicenters that show at least three clusters of crustal events (solid symbols): one located
near the city of Marasesti, another located to the NW relative to the same city, and the
third to the south of the city of Focsani. At the same time, it is observed that the epicenters
of the crustal earthquakes are oriented approximately parallel to those of the subcrustal
earthquakes in the Vrancea region.

Figure 7 also indicates that part of the subcrustal earthquakes that occurred prior to the
main crustal earthquake in the Mărăs, es, ti region (Figures 3 and 7) are located between the
three clusters of crustal events, some even very close to the epicenter of the main earthquake,
which could indicate that subcrustal seismic activity may have played a key role in the
generation of the main earthquake and subsequent aftershocks. This hypothetical influence
has been highlighted by the past research [47]. The second aspect is given by the unusually
decreased seismic activity in the Mărăs, es, ti region before the occurrence of the main event.
This pattern contrasts earlier results [48–50] that investigated the crustal seismic sequences
and highlighted the occurrence of small magnitude earthquakes (preshocks) before the
appearance of the main earthquake. Figure 8 depicts the distribution of Vp/Vs ratios over
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time obtained by applying the Wadati approach on the selected data set. (1 April 2014–30
June 2015). To emphasize the Vp/Vs variation, we used the same algorithm described
previously; the Vp/Vs distribution was shown over time, along with the normal variation
limits (Vp/Vsmin and Vp/Vsmax) derived using the Vp/Vs standard deviation value
(0.071), which was subsequently added or subtracted from the average value of Vp/Vs
(1.716). Values that exceeded the normal limits of variation were considered anomalies
(high or small).
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occurred in the Focsani Basin and surrounding areas during the selected time period (1 April 2014–30
June 2015). Significant earthquakes produced during the specified period are marked with red
vertical lines.

4. Discussion

The moderate subcrustal earthquake (ML = 5.8) generated in the Vrancea region on
28 October 2018 occurred at a Vp/Vs transition stage, as shown in Figure 6. Based on
a comparison of the results obtained in the two scenarios (with all stations respectively
only the stations in the epicentral area), we noticed that the values of Vp/Vs have a
broader dispersion and a lower average when only the stations in the epicentral region
are considered.

The spread might be explained by the lower number of stations used to estimate the
Vp/Vs. However, none of the plots (Figure 6) seem to reveal a specific trend of Vp/Vs prior
to the occurrence of moderate magnitude earthquakes (ML ≥ 4.0), as has previously been
reported in other regions of the world [34]. We separated the selected events into three
depth ranges (60–90 km, 90–120 km, and 120–150 km) and analyzed the Vp/Vs variation
for each depth interval to see whether there are any changes in Vp/Vs ratios. Our analysis
indicates no significant changes in Vp/Vs prior to the occurrence of a major earthquake.

However, it worth mentioning that the last depth interval (120–150 km), a slightly
decreasing trend of Vp/Vs, was seen about two months before the major earthquake
(Figure 9).

Within this depth range, the Vp/Vs distribution was represented, over time, together
with the normal limits of variation (Vp/Vsmin = 1.70, Vp/Vsmax = 1.81) determined using
the value of the standard deviation (0.06), which was subtracted, respectively, added from
the mean value of Vp/Vs (1.76). Figure 9 indicates that about two months before the major
seismic event, with the exception of one event with a high anomaly of Vp/Vs (1.96), many
of the values fall under the minimal anomaly range (Vp/Vs 1.70).



Acoustics 2022, 4 943

Acoustics 2022, 4 FOR PEER REVIEW  10 
 

 

 
Figure 9. Vp/Vs temporal variation as determined by analysis of earthquakes that occurred in the 
Vrancea and surrounding areas during the specified time period (1 April 2018–30 April 2019) within 
a depth interval of 120 to 150 km. Significant earthquakes produced during the specified period are 
marked with red vertical lines. 

Within this depth range, the Vp/Vs distribution was represented, over time, together 
with the normal limits of variation (Vp/Vsmin = 1.70, Vp/Vsmax = 1.81) determined using 
the value of the standard deviation (0.06), which was subtracted, respectively, added from 
the mean value of Vp/Vs (1.76). Figure 9 indicates that about two months before the major 
seismic event, with the exception of one event with a high anomaly of Vp/Vs (1.96), many 
of the values fall under the minimal anomaly range (Vp/Vs 1.70). 

To determine if the Vp/Vs anomalies have a specific orientation in space, we plotted 
Vp/Vs for each event in Figure 10. The distribution of Vp/Vs anomalies does not appear 
to have a specific orientation; rather, these anomalies appear to be associated with low-
magnitude events, which explains the impact of the number of seismic phases in deter-
mining the Vp/Vs ratios. 

 
Figure 10. Vp/Vs distribution associated with selected subcrustal earthquakes (ML ≥ 2.5) that oc-
curred in the Vrancea region from 1 April 2018 to 30 April 2019. The size of the symbols is propor-
tional to the magnitude of the earthquake. The inset shows the location of the study region on the 
map of Romania. 

Figure 9. Vp/Vs temporal variation as determined by analysis of earthquakes that occurred in the
Vrancea and surrounding areas during the specified time period (1 April 2018–30 April 2019) within
a depth interval of 120 to 150 km. Significant earthquakes produced during the specified period are
marked with red vertical lines.

To determine if the Vp/Vs anomalies have a specific orientation in space, we plot-
ted Vp/Vs for each event in Figure 10. The distribution of Vp/Vs anomalies does not
appear to have a specific orientation; rather, these anomalies appear to be associated with
low-magnitude events, which explains the impact of the number of seismic phases in
determining the Vp/Vs ratios.
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Figure 10. Vp/Vs distribution associated with selected subcrustal earthquakes (ML ≥ 2.5) that
occurred in the Vrancea region from 1 April 2018 to 30 April 2019. The size of the symbols is
proportional to the magnitude of the earthquake. The inset shows the location of the study region on
the map of Romania.

For crustal earthquakes, we determined the distribution of the Vp/Vs ratios over
time, for different magnitude intervals, to investigate the existence of possible influences
induced by the magnitude in determining the Vp/Vs ratios. Figure 8 depicts the temporal
distribution of Vp/Vs for all selected events (0.1 ≤ ML ≤ 5.7). The absence of high Vp/Vs
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anomalies before the occurrence of a major earthquake is a key feature emphasized by
our results. Figure 11 depicts the Vp/Vs distributions over time for two sets of events:
one with ML ≥ 1.9 and another with ML ≥ 2.5. Separate analyses of various magnitude
ranges show that the Vp/Vs ratios for the stronger earthquakes (ML ≥ 2.5) fall below the
average prior to the occurrence of the major earthquake. This trend is consistent with the
findings of earlier research, which show a drop in the Vp/Vs ratio prior to the occurrence
of a major earthquake.
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the Focsani Basin and surrounding areas during the specified time period (1 April 2014–30 June 2015),
with ML ≥ 1.9 (top) and ML ≥ 2.5 (bottom). Significant earthquakes produced during the specified
period are marked with red vertical lines.

5. Conclusions

We investigated the variation of Vp/Vs over time using the Wadati diagram, which
was applied to sets of crustal and subcrustal events generated before and after the occur-
rence of two moderate earthquakes at the bending of the southeastern Carpathians.

Although a series of Vp/Vs anomalies can be seen before and after the occurrence of
the moderate subcrustal earthquake of 28 October 2018 (ML = 5.8) in the Vrancea region,
they seem to match well the events with low magnitudes and whose solutions were
determined using a reduced number of seismic phases (Ndef < 40).

Our results show that there were no significant changes in the Vp/Vs distribution
prior to the occurrence of the moderate subcrustal earthquake in the Vrancea region
(28 October 2018, ML = 5.8), which could indicate either a limitation of this method applied
on the selected subcrustal earthquakes data set or that this earthquake was not large enough
to cause noticeable trends.

The results obtained for the moderate crustal earthquake that occurred close to the
Marasesti city (22 November 2014, ML = 5.7) show that the number of earthquakes gener-
ated in the epicentral region was reduced prior to its occurrence, and Vp/Vs values are
generally within normal limits, with no significantly high deviations. This characteristic
appears to be fairly stable, as evidenced by multiple sets of events selected at different
magnitude intervals.
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Another notable feature of this research is the increasing trend of Vp/Vs across the
selected magnitude ranges. We found significant differences between the average values of
Vp/Vs (1.716) obtained for all selected events, the average value of Vp/Vs (1.739) obtained
for earthquakes with ML ≥ 1.9, and the average value of Vp/Vs (1.753) obtained for
earthquakes with ML ≥ 2.5.

The mean Vp/Vs for crustal and mantle earthquakes, as well as their standard errors,
are key indicators of dynamic processes with multidisciplinary implications (e.g., numerical
modeling, petrology).
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