Convective dissolution of carbon dioxide in 2D water-saturated porous media: an experimental study in micromodels

Niloy De¹, Naval Singh ², Remy Fulcrand ³, Yves Meheust ⁴, Patrice Meunier⁵, Francois Nadal ^{1,6}

¹ Wolfson school of Mechanical Engineering
 ² School of Chemical Engineering, Loughborough University
 ³ Institut Lumiere matière, CNRS, Univesity Claude Bernard, Villeurbanne, France
 ⁴ University of Rennes, CNRS, Geosciences Rennes, France
 ⁵ IRPHE, Aix-Marseille universite, CNRS, Centrale Marseille, France

⁶ CEA, Bordeaux, France

Carbon Capture and Storage (CSS)

- Capture CO₂ from industry effluent
- Transport the captured CO₂ to storage site
- Inject CO₂ in geological storage sites – saline aquifers
- Main concern how CO₂ will stay in the underground reservoirs for millions of years?
- Solubility trapping is an effective mechanism for long term storage

Motivations for the study

So far: many studies in pure Hele-Shaw cells or in rock samples (X-ray tomography), but to our knowledge very few in 2D micromodels.

- \rightarrow Experiments in 2D micromodels that
- Allow measuring the concentration field of the dissolved CO₂
- Allow for an analysis of the impact of pore scale heterogeneity on the convective dissolution process
- Bridge the gap between pure Hele-Shaw cell and 2D micromodel

Theoretical description

Theoretical description (2)

$$-\frac{1}{Sc}\left[\frac{\partial \bar{u}}{\partial t} + (\bar{u} \cdot \nabla)\bar{u}\right] = -\nabla P + \nabla^2 \bar{u} - \frac{1}{Da Ra^2} \bar{c}\hat{z}$$

$$\frac{\partial \bar{c}}{\partial t} + (\bar{u} \cdot \nabla)\bar{c} = \nabla^2 \bar{c} \qquad \nabla \cdot \bar{u} = 0$$

$$c = c_0 + \tilde{c}$$

$$w = w_0 + \tilde{w}$$

$$\tilde{c} = c_s(z)e^{iqx}e^{\sigma t}$$

$$\tilde{w} = w_s(z)e^{iqx}e^{\sigma t}$$

- *Sc* is high.
- *H* is the height of the reservoir.

μD

 Flow is parabolic along the thickness of the cell

 H^{2} '

ρD

- q and σ are wavenumber and the growth rate of instability.
- c_0, w_0 are base state, and \tilde{c}, \tilde{w} are perturbation state.

#InspiringWinners since 1909

Experimental Setup

Schematic of Optical Diagram

- Direct injection → thermal instability
- Perform experiment at isothermal condition

- $P_{CO_2} = (V_c + V_V + V_R)^{P_T} / V_R$
- Mixing time <30 s

Photolithography Technique

NOA 63 device fabrication

PDMS imprint

Experimental protocol

Gas inlet

- Schematic of NOA 63 device
- Cell filled before experiment

• $P_{CO_2} = 7 \text{ bar}, BP_{conc} = 10^{-3} \text{ mol } l^{-1}$

• FPS = 7, total time = 81 min

#InspiringWinners since 1909

Characteristic non-dimensional numbers

$$Da = \frac{k_{Da}}{H^2} \qquad Ra = \frac{\Delta pgk_{Da}H}{\mu \phi D} \qquad Da = \frac{k_{HS}}{a^2} \qquad k_{HS} = \frac{E^2}{12}$$

$$Ra\sqrt{Da} = \frac{\Delta\rho g}{\mu D}\kappa^{\frac{3}{2}} = A \times P_{CO_2} \times k_{comsol}^{3/2} \qquad q^* = q \times \mathcal{L} = \frac{2\pi N}{L} \times \frac{1}{A \times P_{CO_2} \times k_{comsol}}$$

- Low-porous- $\emptyset \sim 0.6$, $k_{Da} \ll k_{HS}$
- Intermediate-porous $\emptyset \sim 0.8$, $k_{Da} < k_{HS}$
- High-porous $\emptyset \sim 0.9$, $k_{Da} \approx k_{HS}$

$$A = \frac{\alpha K_H}{\left(\frac{\mu}{\rho_0}\right)D}$$

Computation of permeability

• k_{Da} is determined for the unit cell by COMSOL simulation.

From classical Hele-Shaw to porous micromodel

MM type	<i>E</i> (µm)	<i>а</i> (µm)	<i>R</i> (µm)	φ	$\kappa_{\rm HS} \times 10^{10} ({\rm m}^2)$	$\stackrel{\kappa_{\rm MM}}{\times 10^{10}} {\rm (m^2)}$
a3R200	171	601	176	0.69	24.4	7.9
a3R300	230	900	275	0.66	44.1	16.2
a3R400	227	1202	373	0.65	43.0	14.5
a4R200	255	796	175	0.82	54.2	26.2
a4R400	278	1608	364	0.81	64.4	35.8
a6R200	168	1205	185	0.91	23.5	17.7
a6R400	206	2400	375	0.91	35.4	27.7
a8R200	226	1600	175	0.96	42.6	35.9
a8R400	203	3200	375	0.95	34.3	30.0
a10R200	311	2000	175	0.97	80.6	70.5
a10R400	225	4000	375	0.97	42.2	38.6

$$\emptyset = 1 - \frac{\pi}{2\sqrt{3}} \left(\frac{d}{a}\right)^2$$

- *k_{MM}* directy inferred from 3D comsol Multiphysics
- Close to Ø=1 Darcy and pore scale are equal, Hele-Shaw approximation works
- Ø~0.5 pore scale is much higher than that of Darcy scale, hele-shaw approximation is invalid

Experiments at different partial pressures

- Porous micromodel with center-tocenter distance a = 4 mm
- PCO2 = 1 to 5 bar (end of the linear regime, t = 2 min).
- The wavelength Λ^* does not show obvious dependence on the pressure, so that the dimensionless number q^*_{MM} is proportional to Ra_{MM}^{-1}

Wavenumber as a function of Ra

Ref:- Two-dimensional micromodels for studying the convective dissolution of carbon dioxide in 2D water-saturated porous media, De et al, Lab Chip, 2022, 22, 4645

Wavenumber as a function of Ra (2)

Locking of the wavelength on the distance between adjacent pillars

Ref:- Two-dimensional micromodels for studying the convective dissolution of carbon dioxide in 2D water-saturated porous media, De et al, Lab Chip, 2022, 22, 4645

Conclusions

- New type of NOA-based microfluidic cell to investigate convective dissolution of CO₂ in deep aquifers
- Experiments were performed with CO₂ pressures ranging from 1 to 5 bars
- The convective dissolution process is much slower than in a pure Hele-shaw cell, despite the large porosity (small size of the pillars)
- Measured values of the most unstable wavelength in the linear instability regime exhibit values that are up to 10 times different from those predicted for a standard Hele-Shaw (HS) cell
- When considering in that prediction the medium's permeability (not that of the corresponding HS cell), the discrepancy is down to a factor 3
- A new phenomenon was observed: **locking of the wavelength** on the distance between adjacent pillars

Funding and paper

Funding:

ANR (French National Research Agency), project CO2-3D (ANR-16-CE06-0001)

Reference:

N. De, N. Singh, R. Fulcrand, Y. Méheust, P. Meunier & F. Nadal (2022), Twodimensional micromodels for studying the convective dissolution of carbon dioxide in 2D water-saturated porous media, *Lab Chip* **22**(23), 4645-4655.

Thank you for your attention

Measurement of cell parameters

