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BACKGROUND

Microbial reduction of Fe(IIl) oxides can immobilize phosphorus
from paddy soils, aquatic sediments, wastewater treatment plants etc.

[1-4] by forming a stable precipitate, vivianite (Fe;(PO,),-8H,0)

through reaction with biogenically produced Fe(II).

Phosphorus (P) 1s a plant-limiting nutrient, a scarce and non-

Fe(lll)-reducing
bacteria

GP
o

Bioreduction medium containing;

renewable resource and a major contributor to eutrophication

1n water bodies.

Aim of the study: To develop strategies to transform waste
phosphorus-containing Fe(IIl) oxyhydroxides into useful
agricultural fertilizers using Fe(IlI)-reducing bacteria.

Importance of the study: Trapping phosphorus as bio-
vivianite can serve as both an iron and phosphorus fertilizer
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BIOSYNTHESIS OF Fe(1l) BIOPRODUCTS
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Soil a'pplication as
Fe and P Fertilizer

Green rust

Vivianite

for plants grown 1n calcareous soils, thereby reducing the
overdependence on commercial P fertilizers.

Ferrihydrite as the electron acceptor, Sodium bicarbonate as the buffer, Sodium acetate as the electron donor, and Riboflavin as an electron shuttle

Figure 1: Schematic illustration of the bioreduction of ferrihydrite with and without phosphate to produce
functional Fe(ll) minerals, including vivianite, using the subsurface bacterium Geobacter sulfurreducens

RESULTS: Effect of phosphate and type of Fe(1ll)-reducing bacteria on Fe(1ll) bioreduction
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CONCLUSIONS

% The supply of Fe(Il) and the presence of phosphate were the main factors controlling vivianite
formation. The presence of phosphate at pH between 5 and 7 promoted Fe(II) production which
enhanced vivianite formation.

¢ The study gives insight into the fate of phosphate—loaded Fe(IlI)-oxyhydroxides in systems that
experience anaerobic conditions. The formation of Fe(II) in such systems impacts the
biogeochemistry of iron and consequently, the immobilization of contaminants.

¢ The microbially-mediated vivianite produced in this study has been tested as an iron and
phosphorus fertilizer for plants grown 1n a calcareous medium.

¢ This optimization study used synthetic Fe(III) substrates, and follow-on work focuses on
revalorizing waste Fe(Ill)-phosphate sources from water treatment systems.
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