

JNIVERSITY OF COPENHAGEN

Identifying the dominant hydrochemical processes post wetland restoration along stream valleys, Denmark

Filippa Fredriksson¹, Marta Baumane², Lars Båstrup-Spohr², Hans Henrik Bruun², Kenneth Thorø Martinsen², Sofie Aagaard¹, Bjørg Friis Michelson¹, Kaj Sand-Jensen², and Søren Jessen¹

Wetland restoration has become an important tool for greenhouse gas (GHG) retention, while improving biodiversity. Wetland hydro(geo)logy exerts key control on GHG-emissions and on conditions facilitating biodiversity, yet knowledge of the major hydrochemical processes in restored and nearnatural wetlands is limited. To reduce the knowledge gap, surface waters, precipitation and groundwater are sampled in six restored and six near-natural wetlands of the riparian zone, distributed along three separate stream valleys with differing subsurface geology and management (unmanaged or grazed).

- Installation of 66 shallow wells. Screen: \sim 0.5-0.8 mbgl.
- Installation of 11 deep wells. Screen: 3-8 mbgl.
- Seasonal surface and groundwater sampling.
- Continuous water level data collection.
- Vascular plants identified in 72 circular vegetation plots (D: 0.6 m, A: 0.3 m²).

```
DEPARTMENT OF GEOSCIENCES AND NATURAL RESOURCE MANAGEMENT
```

¹Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark ²Department of Biology, University of Copenhagen, Copenhagen, Denmark

