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Abstract: The electric vehicle (EV) has been regarded as a promising tool for decarbonizing 

urban transportation and mitigating climate change. As EV’s market share continues to increase 

worldwide, it starts to influence the patterns of electrical power usage and human behavior, 

particularly in the urban areas, which might eventually lead to significant change in urban 

structure and energy policy. Some particular questions arise in urban layout and infrastructure: 

does changing to an EV affect people’s preference of home location? Will the increasing 

popularity of EV lead to further suburbanization or help promote a more compact urban form? 

How should the deployment of new urban infrastructure including the energy system guide this 

transition toward a sustainable future? This study of the rapidly expanding metropolis of Beijing 

is conducted to address these questions by combining geo-spatial big data analysis, machine 

learning, and theories of urbanization to examine the relationship between the trajectory of EV 

users’ home location and the changing pattern of energy infrastructure. Gradient Boost Decision 

Tree model is used to investigate the nonlinear associations between the spatial distribution of 
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EV residents and a series of variables related to neighborhood attributes including land use mix, 

building coverage ratio, accessibility to public charging, accessibility to public transit, and 

employment density, as well as GDP. The results indicate that the majority of EV users live in 

the near suburban areas, especially the areas around the 10 km radius away from the city center. 

The discovery that most public charging activities occur within a 1.5 km radius from home 

suggests an optimal threshold for public charging station deployment. These findings can inform 

energy management and infrastructure planning at the local and regional levels to promote 

sustainable urbanization and smarter energy planning.

Key words: electric vehicle, spatial analytics, machine learning, Gradient Boost Decision Tree, 

urban sustainability, energy transition

Highlights 

 The nonlinear relationship between the EV users’ home location and series neighborhood 

attributes is examined. 

 The majority of EV users live in the near-suburban areas around 10 km away from the city 

center.

 Most public charging activities occur within a 1.5 km radius of home, indicating an optimal 

threshold for public charging station deployment.

 Results suggest that the residents in the suburban areas represent the primary beneficiary of 

the electric mobility.

 The findings provide useful hints for future urban layout and infrastructure planning.
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1. Introduction 

The increasing number of cars, coupled with the rapid urbanization worldwide, has led to 

challenges related to environmental pollution and human health. When it comes to the pathway 

of decarbonization, which is necessary to address increasingly severe climate change problems, 

the electric vehicle (EV) have been promoted as an essential choice of urban transportation [1]. 

As an alternative to traditional fuel vehicle options, EVs are growing rapidly in cities around the 

world. The total number of Plug-in EVs (PEV) has reached 11 million worldwide in 2021[2], 

and continues upward. This trend has accelerated as more governments are implementing 

policies and using incentives to encourage EV production and consumption, while limiting the 

growth of gasoline vehicles. For example, the United Kingdom plans to stop selling new diesel 

and petrol gasoline cars by 2030, and only issue new licenses for EVs; Denmark and France aim 

to eliminate gasoline vehicles by 2030 and 2050 respectively [3]. The United States has also set 

an ambitious goal for EVs to make up 50 percent of all vehicles sold by 2030 to combat climate 

change and promote environmental justice [4]. Currently, China boasts the largest EV market, 

with over 3.3 million EV sold in 2021, more than all other countries combined [2].
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It is believed that the increasing penetration of EVs will have a significant impact on the future 

form of cities, yet the scope remains unclear. This shift in energy and transportation will 

certainly stimulate further urban transformation, from infrastructure for power system on a 

macro-scale to travel behavior and home location choice on a micro-scale. However, there are 

debates among scholars and policy makers about in which way the EV will influence the urban 

form and density. Some argue that EVs will become more prevalent in urban centers for their 

potential of improving air quality and reducing traffic congestion[5]. The limitations in travel 

range and charging time also make EVs more suitable for short-distance commuting in large 

cities[6]. These characteristics are expected to contribute to a more compact urban form, 

characterized by high-density development, mixed land uses, and shorter live-work distance. 

Others contend that due to significant lower energy costs driving an EV, people may be more 

inclined to live in the suburb. With the anticipated advancements in battery technology, 

expansion of charging networks, and improvement of road network, EVs may benefit long-

distance travelers even more [7]. The growing business model of ride-sharing and the 

forthcoming autonomous driving technologies might offer greater comfort and flexibility for 

travels and passengers and potentially encourage people to spend more time in a car. However, 

current studies have not provided concrete evidence as to how the EV will impact urban growth. 

This remains a crucial question as it will affect the demand of new infrastructure and influence 

the deployment of energy networks. 

Previous studies have discovered the mutual influence between spatial attributes of 

neighborhood environmental and car ownership [8-11]. For example, people who live in suburbs 
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with inadequate public transportation have a higher dependence on cars, while a compact city 

form with higher public transport accessibility tend to discourage car ownership [10]. In general, 

home location has a larger impact on car dependency than workplace [11]. When we compare 

EVs and gasoline vehicles, their different ways of operation, such as location, time, and 

frequency of charging or refueling, means that they likely have different influences on the built 

environment including home location choice, live-work pattern, as well as urban layout and 

infrastructure. However, a gap remains in the study of EV owners’ residential preference and the 

relationship between the built-environment attributes and EV ownership.

Understanding the above-mentioned issues is crucial for transportation planning, energy 

management, and urban sustainability, as well as for policies promoting EV, green energy, and 

sustainable urban development. To address the research gap, this study focuses on the 

distribution pattern of EV users’ home locations and its association with the built environment, 

and tries to answer two primary questions:

(1) Do EV users tend to live in the city or in the outskirts; in other words, will the rapidly 

growing EV penetration lead to further expansion of large cities or contribute to consolidation of 

urban density?

(2) To what extent are the major attributes of urban layout compatible to the EV’s characteristics 

and playing a role in EV users’ home location choice?  

This study focuses on the non-linear effects related to the built environment. It uses multi-source 

geospatial big data, specifically the anonymous active EV users’ residential distribution data, 

from location-based services, and employs geospatial analytics and machine learning models for 
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analyses. GIS-based spatial analytics are first used to visualize EV users’ residential patterns in 

relation to such built-environment variables as land use mix, building coverage ratio, 

accessibility to public charging, accessibility to public transit, employment density, and the 

corresponding economic productivity (GDP) in the same area. We then use a Gradient Boost 

Decision Tree (GBDT) model to measure the non-linear effects of correlations between the rate 

of EV owners within the residents and the selected built-environmental variables. 

2. Literature review 

Many researchers and planners argue that EV technology will primarily benefit city dwellers due 

to the limited travel range of battery power. It is also believed that EVs, with their environmental 

attributes such as low pollution and noise, will make an ideal alternative to conventional vehicles 

for inner-city commuters. As a result, public charging facilities tend to be deployed in urban 

centers [12]. Until recently, car registration data in Europe does indicate that EV owners tend to 

cluster around downtowns [7]. This conclusion, however, might depend on location and social 

context. In the same time, the growing popularity of EVs has slowly shifted the perspectives of 

the relationship between EV usage and urban transport infrastructure. A 2019 research and 

development agenda by the U.S. Renewable Energy Laboratory, for example, urges a more in-

depth re-evaluation of the dynamics [13]. Some data suggests that EVs may grow faster in 

suburbs or rural areas than in urban centers. In the UK, surveys show that 70% of households 

have garages or off-street parking, indicating potential for high residential charging demand, but 

only 30% in urban areas [14]. High-density urban areas may not be the best places for EVs due 

to traffic congestion, which can cause issues with battery limits and space constraints for 

building charging stations. On the contrary, people living in the urban outskirts may benefit more 
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from EVs' lower operational costs [5]. Other researchers observe that with less options of public 

transportation, suburban lifestyle makes residents more reliant on an efficient vehicle [15]. Even 

some surveys in Europe indicates a stronger motivation by suburban or rural residents to switch 

to an EV than urban residents [16]. Other researchers try to look into the variations related to 

residential location that might affect the willingness to purchase an EV [17].

Many studies have been conducted to understand the specific characteristics of EV in order to 

promote their acceptance as an alternative to traditional fuel vehicles. Researchers have found 

that most EV trips are short distance, but the average total mileage over a period of time is 

considerably higher than that of a gasoline vehicle, suggesting that EV users tend to travel more 

frequently [18, 19]. While the limited driving distance is still a common concern for EV owners 

[20], some studies suggest that EV drivers prioritize energy efficiency by optimizing their routes 

more often than non-EV drivers [21]. Additionally, due to the long charging time required, EV 

users are more likely to charge their vehicles near their departure point (home-charging) or at the 

end of a trip (destination charging) [22]. While charging at home is the best solution, it is not a 

common condition for everyone in large cities, as private parking is often not available [23]. An 

empirical study from Germany indicates that 40 percent of drivers do not have a dedicated 

parking spot, and many EV owners depend on public charging facilities [16, 24]. Another survey 

from Northern Europe shows that more than 75 percent of respondents emphasize their 

dependence on public charging stations (PCS) [7]. deployment of PCS is seen as a crucial factor 

in promoting the EV market [25]. 

Given the distinctions between EVs and gasoline vehicles, it is important to understand how this 
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emerging mode of transportation may interact with the built environment. Many studies have 

explored the factors that influence car ownership, assuming linear correlations. Some common 

findings suggest that higher residential density [9], higher level of mixed land use [26], and 

higher density of bus stops all have the effect of contain private car ownership or usage when 

other policies are implemented properly. In contrast, poor accessibility to or planning of public 

transportation services force car purchase and use [27, 28]. However, findings also vary by 

countries and social contexts. For example, the case studies in New York City [29] and in 

Washington DC [8] confirm that adjacency to the city’s Central Business District (CBD), high 

employment density, and convenient bus system substantially reduce car ownership. In 

Shanghai, however, the accessibility to public transit does not show a clear correlation [8]. 

In recent years, machine learning models have become increasingly popular for exploring the 

non-linear relationship between the residential environment, social-economic variables, and car 

ownership. For example, Zhang et al. 2020 [10] used a GBDT model to measure the non-linear 

impact of household car ownership and multivariate accessibility measures in Beijing and found 

that local accessibility indicators, such as retail and service density and employment density, 

have more important influences than public transport accessibility in reducing car ownership. 

Wang et al 2021 [11] discussed the non-linear effects of the built environment of residential 

neighborhood versus workplace on car dependence. The use of non-linear models can connect 

variables effectively and better articulate policy implications for planning. Although these 

previous studies have explored the impacts of urban planning variables on car ownership, it is 

unclear whether the same holds true for EVs. There remains a gap in exploring the relationships 

of the increasing EV penetration with the trajectory of urban expansion and with the traditional 
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forms of public transportation. No research has focused on EV owners’ residential pattern, and 

explore the effects of essential built-environmental factors.

3. Data and Methodology 

3.1 Study area 

Beijing has become a pioneer among cities worldwide in promoting EVs. Due to the serious air 

pollution, the city has implemented strict policies to control car ownership since the 2008 

Olympic Games, including a lottery system for purchasing a car and alternate dates of permitting 

car usage based on license plate number. It also incentivizes EV ownership through direct 

subsidies and waiver of those restrictions placed on gasoline cars. 

There are entirely 40,000 more EVs in Beijing in a single year of 2020. The rapid proliferation of 

EV in Beijing is changing the city’s urban layout, infrastructure strategies, and environment. It is 

estimated that CO2 emission could decrease by 38,280 tons per day with the transport 

electrification [30]. In the meantime, Beijing has been undergoing dynamic urbanization, with a 

substantial increase of density in existing urban areas as well as continued expansion into its 

peripheries. In general, the growth pattern of Beijing has been radial one centered at the historic 

core, the Forbidden City, and expanding by building circular ring roads. Figure 1 indicates this 

centripetal structure and the distribution of population densities. How does this spatial pattern 

match the charging demands of EV users, and how does the growing number of EVs influence 

the continuing development of the city? With the predicted dominance of EVs in the near future, 

this mutual influence is critical for the planning and management of the city. 
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Figure 1. Map of study area overlay with parcels of built-up areas (50% transparency display), population 

density[31], urban ring roads, radiation circle from the city center (10 km and 30 km).   

3.2 Data collection and processing 

The datasets for this study are derived from multiple sources, as listed in Table 1. The built-up 

areas consist of urban parcels, used as the basic units of spatial analysis and modeling [32]. We 

collected 24,778 EV charging records (using public charging stations during November 2019), 

and the EV owners’ home locations were derived from location-based services (LBS) data. In the 

data cleaning process, EV residential locations outside of Beijing were excluded, resulting in 

20,387 valid EV users. In addition, the invalid parcels of only non-residential use were removed. 

EV users were then aggregated into urban parcels and spatially combined with other variables in 

ArcGIS Pro. The final dataset consists of 2,970 parcels with active 20,387 EV residents (with 

public charging activities) used for analysis and modeling. The LBS data was provided by Baidu 

Maps, China's largest mobile map service and big data provider [33]. 
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Table 1. Overview of variables and descriptions
Category Name description Mean SD Min Max

Y EV resident rate = log ( 𝐸𝑉 
resident

𝑇
otal

 
residents

× 100)  (each parcel) 0.16 0.27 0.00 2.00 

Employment density 
Working population density of each parcel 
(counts/km2) 7.01 1.48 0.00 11.15 

Surrounding amenities/ 
Landuse mix

To measure the service capacity and 
convenience of each parcel 0.18 0.32 0.00 2.40X1

The proportion of 
building areas

The ratio of total building areas and parcel 
areas (range between 0 and 1)  

0.20 0.10 0.00 0.72

Density of bus station The density of bus stops from POI (counts/km2) 0.00 0.00 0.00 0.02
Metro accessibility 1.39 1.93 0.00 12.37X2
PCS accessibility 

To measure public transport service capability, 
based on formula (1) ~ (2) 0.33 0.25 0.00 0.98

X3 Charging distance 
(from home to PCS)

The distance between home location and the 
charging station they visited (km) 0.95 0.42 -2.30 1.61

X4 Distance to urban center The distance between each parcel (center point) 
and Beijing Tiananmen (km) 2.73 0.66 0.44 4.43

X5 GDP 1 km grided raster data through spatial zonal 
statistics 1.58 0.10 0.00 0.72

*PCS represent public charging stations; for the ML model, logarithmic transformation of these datasets are 

performed. Y represents the dependent variable; X1~X4 represents the independent variables that in four 

categories. According to the distribution of each variable, log transformation were conducted to make the 

variance as constant as possible for modelling. Y represents the dependent variable; X1 represents the 

economic variables, X2 represents the indicator to measure the relationship with public transport system, X3 

represents the indicators developed to measure charging distance and relationship with the infrastructure; X4 

represents the indicators designed to measure the relationship between EV distribution and urban 

space/decentralization.

We use EV Residential Rate as the dependent variable, representing the ratio of active EV 

residents to the total resident population in each parcel. The selected independent variables were 

divided into five categories: 

1) X1 (urban development): indicators that reflect urban development, including building 

coverage ratio, employment density and land use mix. 
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2) X2 (public transport): indicators related to public transportation and infrastructure, 

including density of bus stops, and accessibility to metro station and public charging station. 

3) X3 (charging behavior): indicators reflecting accessibility to charging, such as distance to 

public charging stations. 

4) X4 (location): an indicator reflecting EV owners’ home location in the city, measured 

with distance to the urban center. 

5) X5 (economic factor): the grided GDP data reflects economic vitality over urban space.

In Table 1, list of all variables, the distance metric uses Euclidean distance. The grided GDP data 

is retrieved from remote sensing calibrated nighttime light data [34]. The accessibility to metro 

stations and to public charging stations are measured by public transportation service 

capabilities. The population density and employment density are derived from Baidu heat map 

big data, which has been used and verified in several studies [35, 36]. The densities of public 

transportation service, including metro stations, bus stops, and public charging stations, and other 

land use categories (surrounding amenities) are measured using point of interests (POI) data. The 

service capacity and convenience of surrounding amenities are calculated using the land use mix 

entropy approach, including supermarkets, commercial buildings, educational places (primary 

and middle schools), universities, hospitals, and entertainment. The formula reads:

                               𝑆 =  
― ∑𝑁

𝑖=1 𝑐𝑖ln (𝑐𝑖)  
ln 𝑁                              (1)

Where 𝑐𝑖 represents the ratio of each surrounding amenities categories in each parcel, and N 

stands for the total number of amenities categories, namely six in this study. 

We calculate the accessibility by using cumulative opportunity method to evaluate the spatial 
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separation effects [37] 

    𝐴𝑖𝑗 = ∑ 𝑓(𝑑𝑖𝑗)             

                             𝑓(𝑑𝑖𝑗) = {1 ―  𝑑𝑖𝑗

𝑅
,  𝑑𝑖𝑗 < 𝑅

0,             𝑑𝑖𝑗 ≥ 𝑅                            (2)

Where 𝐴𝑖𝑗 represents the accessibility index which summarizes the surrounding amenities’ 

service capacity and convenience for people living in each parcel; where 𝑑𝑖𝑗 is the Euclidean 

distance from the parcel center i to amenity j; 𝑅 is the threshold distance that is set with 1.5 km 

as it has been used as a walkable distance for normal life circles in many studies.

3.3 GIS-based mapping

The kernel density estimation (KDE) method in ArcGIS was used to visualize the selected 

variables, using the parcel as the unit of spatial analysis. As a popular spatial analysis technique, 

KDE can produce a smooth density surface of point features over space by computing the feature 

intensity as density estimation[38]. These mappings can help to show the spatial patterns and 

characteristics of different variables over urban areas, taking into account distance decay effects. 

In addition, bivariate categorical mapping was used to represent the distribution of EV residents 

in relation to resident population and metro accessibility. By visually interpreting information 

from these maps, initial spatial associations between independent and dependent variables can be 

interpreted. These maps will be further combined with the machine learning model results to 

improve interpretability.

3.4 GBDT model 

This study applied the Gradient Boost Decision Tree (GBDT) method to examine the nonlinear 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4392640

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



associations between the rate of EV residents and the built environment attributes in the vicinity 

of their home location. GBDT is a data-driven machine learning method, proposed by 

Friedman[39], which is well-suited for dealing with heterogeneous data (e.g., features measured 

on different scales) and can automatically detect non-linear feature interactions. GBDT has some 

advantages compared to other ML models when dealing with various challenges. For example, 

compared to Random Forest, the tree in GBDT is fit to the residual of the previous tree, allowing 

GBDT to reduce bias, while RF tries to reduce variance. Compared to traditional Boosting 

methods, GBDT can better eliminate residual errors. 

As a result, GBDT has been widely used to evaluate the non-linear effects of built-environmental 

factors on various transportation issues such as conventional driving distances[40], conventional 

car ownership/dependence[11], and transport-induced carbon emissions[41], etc. It has been 

demonstrated as an efficient machine learning model with optimal performance, yet few studies 

have applied it in exploring the relationship between built-environment factors and the rate of 

EV adoption.

Mathematically, in this study, GBDT sets 𝑦 as the dependent variable or predicted variable (i.e., 

the rate of EV residents in the urban parcel), and sets x as the independent variables (i.e., built 

environment variables 𝑥1~𝑥9 , into four categories); and the datasets were split into 80% for 

training and 20% for testing sets. The algorithm targets to a predicted expected function 𝑓(𝑥) as 

a linear combination of N addictive decision trees ∑𝑁
𝑛=1 𝛼𝑛𝛽(𝑥,𝜃𝑛) with minimizing a specific 

loss function 𝐿(𝑦, 𝑓(𝑥)) (i.e., Gaussian loss function, in general, for a continuous dependent 

variable). N represents the number of trees; 𝛼𝑛 and 𝜃𝑛 represent the weight and a set of 
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parameters of the n-th tree 𝛽(𝑥,𝜃𝑛), respectively.  

The squared error for regression is used for Loss function: 

                        𝐿(𝑦, 𝑓(𝑥)) = (𝑦 ― 𝑓(𝑥))2                         (3)

The GBDT iteratively approximates 𝑓(𝑥) using a gradient-descent method, which targets to fit 

the n-th decision tree 𝛽(𝑥,𝜃𝑛); given the estimated tree, the optimal gradient can be estimated and 

derived, ℵ is set as a learning rate (0 <ℵ<1) to moderate the under- or over- fitting, and thus the 

iterative equation for the loop from 1 to N can be expressed as: 

                    𝑓𝑛(𝑥) = 𝑓𝑛―1(𝑥) + ℵ𝛼𝑛𝛽(𝑥,𝜃𝑛)                  (4)

The 5-fold cross-validation was used to tune parameters until the mean square error (MSE) of 

approximation reached the minimum value. The final model here sets the learning rate at 0.01, 

with 1,000 trees and a depth of 4. 

The results of the model provide insight into the relative importance of each independent 

variable on the dependent variable, the rate of EV residents. However, the outcome of GBDT 

alone cannot provide significance tests or address the spatial hierarchies. To address this, GIS 

spatial analysis was integrated with the partial dependence plot (PDP) to improve the 

interpretation of the results. PDP can show whether the relationship between the dependent 

variable and a selected feature is linear, monotonic, or more complex and non-linear. In this 

research, PDP was used to enhance the interpretability of the model results by demonstrating the 

non-linear relationship between the rate of EV residents and each explanatory variable. The PDP 

function for regression is defined as:
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            𝑓𝑠(𝑥𝑠) =  𝐸𝑋𝑐[𝑓(𝑥𝑠, 𝑋𝑐)] =  ∫ 𝑓(𝑥𝑠, 𝑋𝑐)𝑑ℝ(𝑋𝑐)             (5)

                   𝑓𝑠(𝑥𝑠) =  1𝑛∑𝑛
𝑖=1 𝑓(𝑥𝑠, 𝑥(𝑖)

𝑐 )                       (6)

where the 𝑥𝑠 represents the specific explanatory variable that the PDP should be plotted and 𝑋𝑐 

are the other variables together used in GBDT model. The feature 𝑥𝑠 and 𝑋𝑐 make up the total 

features (explanatory variables). By marginalizing over other features 𝑋𝑐, the effects of 𝑥𝑠 on 

the prediction (here is EV rate) will be plotted. 𝑓𝑠 is estimated by Monte Cario method in 

function (5) by calculating averages based on the training data.

4. Results 

4.1 Interpretations from geospatial analysis

Figure 2 plots the kernel density mapping of the EV residential rate and that of the other relevant 

variables that might be associated with EV residential patterns. As can be seen from Figure 2(a), 

the places where EV residents are densely located are neither in the urban center (within the 

second or third ring road), nor in the suburbs (e.g., outside the sixth ring road), but located in 

some specific areas between the fourth ring road and the fifth ring road. Moreover, it did not 

increase or decrease with the distance to the urban center (that we used to measure the urban 

extent), which indicated a nonlinear relationship between these locations and the urbanized 

space. Combined with the bivariate mapping in Figure 3, the distribution of EV users and 

resident users is consistent in the yellow parcel; Noted that the areas between the fourth and fifth 

ring roads especially in the northern part are ‘both high’. In contrast, the parcels in blue show 

there is higher density of EV residents, relatively, and the red parcel represents a relatively small 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Mapping the variables with GIS. (a) is the density map of EV residential rate. (b) is the 
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employment population density map. (c) is the bus stations density map. (d) is the density of PCS 

accessibility index. (e) is the density map of service capacity and convenience based on each parcel. (f) is the 

density of Metro accessibility. (g) is the density map of building areas. (h) is the 1km grided calibrated 

GDP level from nighttime light data.

(a) (b)
Figure 3. The bivariate mapping, showing the distributions of both high, high-low, low-high and both 

low. (a) shows the EV resident vs the total residents. (b) shows the EV residents vs metro accessibility 

index. 

number of EV residents. Specifically, the southwestern and northeastern areas have a relatively 

small proportion of EV users, particularly outside the sixth ring road. This spatially adjacent but 

differential distribution further indicated that EV residents' location might be related to 

surrounding built environmental variables, for example, the metro accessibility (Figure 3. b) etc. 

An interesting pattern is that, the accessibility characteristics of the metro stations are 

concentrated in the area within the fourth ring road in Figure 3, and the areas outside the fourth 

ring road continue in the north and south directions respectively; however, in the suburban areas 

(here is between the fourth and fifth ring road), there is still a relatively high proportion of EV 

residents while the metro accessibility is low, indicating that EV has the potential to provide 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4392640

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



mobility alternatives at areas with low metro accessibility.

Table 3. Relative contributions of explanatory variables on the EV residential rate

4.2 Results from GBDT model

4.2.1 Relative significance of explanatory variables

The importance and rank of selected explanatory variables on the EV rate was showed in table 3. 

The importance of employment density ranked first, accounting for nearly 65% of the 

explanatory variables; it indicated that EV rate is significantly affected by employment 

distributions. The second important variable was the proportion of building areas, with a relative 

contribution of 11.6%; the impact of this variable was easy to follow because the EV 

infrastructure layout has certain requirements for the available space, especially for the 

renovation of existing facilities; and the building area proportion reflected the development of 

the parcel and the occupancy of building in space. The influence of the density of public 

transportation and the accessibility of subway stations were relatively small (though the former is 

more important than the latter), considering private EVs were used usually as supplement for the 

places where public transportation system was not sufficient. Ranked fourth was the distance to 

public charging stations from residential point, assuming some people' dependence on the public 

charging facilities. While the accessibility of public charging stations was also with relative 

Explanatory Variables Category Rank Importance (%)

Employment density 1 60.0
Land use mix 4 4.6
Building coverage ratio

X1:
 urban development 

2 12.0
Density of Bus stop 3 5.0
Metro Accessibility

X2: 
public transport 9 2.3

PCS Accessibility 7 3.9
Charging distance 

X3: 
charging behavior 5 4.5

Distance to urban center X4: deurbanization 8 3.4
GDP X5: economic factor 6 4.3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4392640

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



small influences, suggesting potential mismatch between supply and demand; it has also been 

discussed in [33]: most of the current charging stations in Beijing are located in commercial land, 

while the layout of residential land is deployed less, particularly the suburbs is relatively lower. 

The level of GDP representing economic activity, the land mix representing surrounding 

convenience, and the indicator representing de-urbanization—the distance from the center—

showed relatively lower effects on EV rate.

4.2.2 Nonlinear impacts of explanatory variables 

Most of the built-environment factors have non-linear and threshold effects on EV residential 

rate (i.e., Partial dependence) as shown in the figure 4. The interpretation from the results is 

given from four aspects as follow. 

a） b） c）d） e） f）

g） h） i）
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Figure 4. Non-linear effects of explanatory variables on EV residential rate

Regarding the relationship between EV residential rate (EVrate) and some economically-related 

variables figure 4 a)~d), we explore how EV residential rates change with the increase of a). 

employment density, b).proportion of build area, c).GDP and d).landuse mix. In general, the 

employment density, the proportion of build areas and GDP have a negative effect on EVrate. 

From economically perspective, it indicated that developing regions in the city are more likely to 

favor EV. It is consistent with the conclusion from previous studies [8, 29]) that employment 

density has a negative impact on car ownership (conventional vehicles); it also applies to EV. 

Empirically, workplace accessibility from home may reduce human’s car depends, while high 

employment density is usually associated with high GDP and well-developed levels of public 

transport system. The high proportion of build areas refers to the available space is relatively 

limited; it indicated that EV users may be more likely to live in areas with a lower density of 

buildings, such as suburban areas or in the newly built communities. Landuse mix has a positive 

effect on EVrate, and the significant threshold effects showed that first with a relative flat line 

between 0.025 and 0.71, then increasing sharply and peaking around 0.73.

PCS accessibility and charging distance have significant non-linear effects on EVrate (positive in 

general), as shown in figure 4 e) and f). When it comes to the threshold effects the relationship 

varies across the whole range of such two variables that related to charging behavior and 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4392640

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



infrastructure deployment. When the charging distance below 0.39, it nearly showed no effects 

on EVrate but then sharply increasing and peaking around 0.4 (the logarithm corresponds to 1.5 

km in reality); and then decreased to a short flat line and start increasing again with two peaks at 

0.45 and 0.58; between 0.61 and 1.3, it showed a relative steady and non-effects on EV rate; then 

it reached another peak at 1.4 (the logarithm corresponds to 4.0 km in reality). Regarding the 

PCS accessibility, it has very limited effects below 0.09 but then increased sharply and reached 

the peak around 0.1; after the peak, it decreased and the trend is leveling stable after 0.12. The 

peaks also indicated that EV users prefer to charging not far from home (i.e., within 4 km); 

Insufficient deployment of PCS will have a negative impact on EVrate. Some previous study 

pointed out that current PCS has not been fully used [33]. These threshold effects indicated the 

implications the appropriate level of public charging deployment around residential 

neighborhoods (i.e., 1.5 km living-circles, according to the peaking threshold above) for 

increasing EVrate. 

In terms of the non-linear and threshold effects of public transport system—metro accessibility 

and bus stop density, the results in general, showed they have positive impacts on EVrate. 

Specifically, when the bus stop density is below 0.000012, the rate of EV residents increases 

dramatically and reaches the first peak when the bus stop density is 0.000021; as the bus stop 

density reaches 0.000063, the EV residents rate increases significantly again and then the EV 

residents rate remain steady when the bus stop density is between 0.000075 and 0.00025; and 

then keep increasing and remain steady at 0.00032 stops/km2. These findings have two 

implications regarding the relationship between EV residential patterns and bus stop density. 

Firstly, when the bus stop density is low, residents usually have to rely on private cars and thus 
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EV is a preferred mode for these groups of residents. Secondly, EV users tend to live in areas 

with relatively high bus coverage (more than 0.00032 stops per square kilometer according to 

our results). Therefore, when considering the implementation of public charging stations to 

benefit EV residents, the areas with no or very little bus coverage or very high bus coverage 

should be given priority to. 

The distance to urban center was used that characterize urban decentralization to explore whether 

EV popularization will lead to urban expansion. The non-linear and threshold effects showed that 

the further away from the city has a positive impact on the increase of EV rate. However, it is 

noted that the distance from the city center is peaking about 10 km (corresponding to 2.25 after 

taking the logarithmic value in figure 4), which is the favorite place for EV users. This is 

consistent with the spatial distribution in figure 2-3. Through spatial measurement, such 10 km 

threshold reflected by radiation circle in figure 1 is around the fourth ring road of Beijing, which 

is far away from the city center and between the center and the suburbs. After the peak, it 

decreased sharply and showed a relative low effect on EV rate until 3.5 (refers to 30 km radiation 

circle) to reach another peak; it partially indicated some EV users choose to live around the sixth 

ring road but distributed with significant spatial heterogeneity.

5. Discussion and Conclusion

EV technology is driving a new transition in energy and transportation worldwide. While this 

trend is unavoidable and is supported by policies everywhere, EV’s penetration rate is still 

dependent on some external factors. Through geospatial analysis using machine learning GBDT 

model, this research examines the non-linear effects of different neighborhood built-environment 
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variables on the rate of EV residents in Beijing. Based on the observation data of active EV 

users’ datasets, this study reveals a verifiable linkage between EV ownership and the 

suburbanization of the city. In the case of Beijing, this indicates that EV users in general are 

leaning towards living in areas that are neither too far away from nor too close to the city center, 

and they tend to cluster around the areas about 10 km from the city center. In general, 

employment density, building coverage ratio, and GDP have negative effects on EVrate; while 

accessibility to public transportations and public charging stations have positive effects on 

EVrate.

This local context provided here should help with understanding the non-linear results. The 

finding that EV rates are higher outside urban centers and that most EV residents require public 

charging around their home locations are to some degree related to Beijing’s local conditions. 

The increasing EV ownerships pose challenges to existing power system and demand updates of 

infrastructure deployment. There are many old neighborhoods in Beijing, where renovations are 

both difficult and costly. This represents another challenge for the historic center of Beijing, 

where building density is high, streets are narrow, electric infrastructure is dated, and historic 

landmarks and traditional Hutong neighborhoods have to be preserved. Even in the newer 

residential areas, the high-density high-rise housing typology also means a shortage of parking 

space. A private parking space typically costs multiple times the price of an EV. It is reported 

that 64 percent of car owners in the center city choose to rent a parking space[42]. It means most 

people do not have access to home charging and rely more on public charging stations.

In regard of the EV’s effect on the urban structure, namely, whether it tends to foster a compact 

urban form or encourage further decentralization, the results suggest that the residents in the 
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suburban areas represent the primary beneficiary of the electric mobility. This effect is reflected 

in a reciprocal relationship, that is, people living in the suburb tend to choose EV as a primary 

means of travel, and existing EV users tend to choose a suburban location when looking for a 

new home. For the former effect, the lower operational cost of the EV makes it favorable for the 

long-distance commute, and the environmental benefits are also more obvious. At the same time, 

the relative shortage of public transportation options prompts suburban residents to choose a 

personal vehicle. Beijing’s incentives for the EV also play a major role in these dynamics, but 

their impact is the same for people living in the center city and those in the suburban areas. For 

the latter effect, the lower building density proportion in the suburb also means that the capacity 

to install charging facilities (ratio of charging station per capita) is higher, and the prospect of 

future infrastructural expansion and upgrade is also better.

6. Policy implications

These findings, along with the thresholds for PCS and distance to urban centers, could provide 

useful hints for future urban layout and infrastructure planning, and contribute to efforts of urban 

sustainability. First, provided that the majority of PCS were currently deployed in urban center, 

increasing the density of PCS network in the suburban areas is recommended, using the principle 

of 1.5 km radius from major residential areas to better serve the existing and prospective EV 

users. This strategy should also reduce the pressure on infrastructural development in the high-

density building parcels in the inner city as more EV drivers can charge near their suburban 

homes. Priority should be given to the large residential neighborhoods around the fifth Ring 

Road, with a priority of the areas around 10km radius from the urban centers.
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Understanding the EV owners’ residential rate and its relationship with urban environmental 

variables helps assess the impact of this new transport mode on urban forms. The study of these 

correlations can inform decision making in response to transport electrification and urbanization, 

including the coordination of EV infrastructure with electric network, the layout for urban 

expansion as related to transit planning and community building, and the redesign of streets and 

open spaces to enhance human interaction in conjunction with the emerging modes of 

transportation. It is critical to incorporate the EV’s benefits of energy and carbon reduction with 

proper urban plans and design strategies in order to improve the human environment and lifestyle 

and to optimize urban resources.
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