Supplementary material for RESULTS in Poster [1/5]

Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link" Y.Bohbot-Raviv, V. Babin and G. G. katul
\square Measured vertical energy spectra and co-spectrum at two Reynolds number

Supplementary material for RESULTS in Poster [2/5]

Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link" Y.Bohbot-Raviv, V. Babin and G. G. katul
\square Deviation from idealized co-spectrum power law - estimation and measurements

$$
\Phi_{\gamma^{\prime}}=k_{v}\left[\frac{4}{7}\left(\int_{0}^{1} d \hat{k}+\int_{1}^{\infty} \hat{k}^{-\frac{p}{3}+\gamma^{\prime}} d \hat{k}\right)\right]^{3 / 4}
$$

Supplementary material for RESULTS in Poster [3/5]

Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link"
Y.Bohbot-Raviv, V. Babin and G. G. katul
[Measured deviation from idealized slow relaxation of co-spectra
$\tau(k) \sim k^{-\frac{7}{3}+\gamma^{\prime}}$

Supplementary material for Supplementary material for RESULTS in Poster [4/5]

Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link"
Y.Bohbot-Raviv, V. Babin and G. G. katul
\square Deviation from idealized co-spectrum due to finite Re number - estimation and measurement

$$
\Phi_{R e}=k_{v}\left[\frac{4}{7}\left(\int_{0}^{1} d \hat{k}+\int_{1}^{R e_{\tau}} \hat{k}^{-\frac{7}{3}} d \hat{k}\right)\right]^{3 / 4}
$$

Supplementary material for RESULTS in Poster [5/5]

Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link" Y.Bohbot-Raviv, V. Babin and G. G. katul

D Deviation from idealized co-spectrum due to Intermittency

$$
E_{w w}(k)=C_{K}^{\prime} \epsilon^{2 / 3} k^{-5 / 3}(k L)^{\alpha}
$$

	$L=z$	$L=\delta$	$L=$ length scale;
VKC	$\Phi_{z}=\kappa_{v}\left[\frac{1-3 \alpha / 7}{1-3 \alpha / 4}\right]^{3 / 4}$	$\Phi_{\delta}=\kappa_{v}\left[\frac{1-3 \alpha / 7}{1-3 \alpha / 4}\right]^{3 / 4}\left(k_{a} \delta\right)^{3 \alpha / 4}$	
$\alpha \approx-0.1$	\rightarrow slight decrease VKC	\rightarrow slight decrease VKC	
Law of the wall	$\frac{d U}{d z} \sim \Phi_{\mathrm{z}}^{-1} \frac{\mathrm{u}_{*}}{\mathrm{z}}$	$\frac{d U}{d z} \sim \Phi_{\mathrm{z}}^{-1} \frac{\mathrm{u}_{*}}{\mathrm{z}}\left(\frac{z}{\delta}\right)^{3 \alpha / 4}$	
Velocity	$U \sim \log (\mathrm{z})$	$U \sim \log (\mathrm{z})+\mathrm{z}^{f(\alpha)}$	

