Supplementary material for RESULTS in Poster [1/5] **Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link"** Y.Bohbot-Raviv, V. Babin and G. G. katul

□ Measured vertical energy spectra and co-spectrum at two Reynolds number

Supplementary material for RESULTS in Poster [2/5] **Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link"** Y.Bohbot-Raviv, V. Babin and G. G. katul

Deviation from idealized co-spectrum power law – estimation and measurements

Supplementary material for RESULTS in Poster [3/5]

Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link" Y.Bohbot-Raviv, V. Babin and G. G. katul

□ Measured deviation from idealized slow relaxation of co-spectra

$$\tau(k) \sim k^{-\frac{7}{3}+\gamma}$$

Supplementary material for Supplementary material for RESULTS in Poster [4/5] Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link" Y.Bohbot-Raviv, V. Babin and G. G. katul

Deviation from idealized co-spectrum due to finite Re number – estimation and measurement

Supplementary material for RESULTS in Poster [5/5]

Perturbed Roughness Sublayer Affecting the Law Of The Wall Modeled by a "Co-spectral Link" Y.Bohbot-Raviv, V. Babin and G. G. katul

Deviation from idealized co-spectrum due to Intermittency

	L = z	$L = \delta$	L = length scale;
VKC	$\Phi_z = \kappa_v \left[\frac{1 - 3\alpha/7}{1 - 3\alpha/4} \right]^{3/4}$	$\Phi_{\delta} = \kappa_{v} \left[\frac{1 - 3\alpha/7}{1 - 3\alpha/4} \right]^{3/4} (k_a \delta)^{3\alpha/4}$	$\alpha \approx -0.1$
$\alpha \approx -0.1$	ightarrow slight decrease VKC	ightarrow slight decrease VKC	
Law of the wall	$\frac{dU}{dz} \sim \Phi_z^{-1} \frac{u_*}{z}$	$\frac{dU}{dz} \sim \Phi_z^{-1} \frac{u_*}{z} \left(\frac{z}{\delta}\right)^{3\alpha/4}$	
Velocity	U~log(z)	$U \sim \log(z) + z^{f(\alpha)}$	

$$E_{ww}(k) = C'_{K} \epsilon^{2/3} k^{-5/3} (kL)^{\alpha}$$