
Method
• Calving fronts were automatically derived using the HED-Unet, a deep learning 

framework that combines segmentation and edge detection (Heidler et al., 2021)
• Incorporation of multi-resolution information is strengthened by a hierarchical attention 

mechanism and deep supervision

• Transfer learning is applied based on a model originally trained on Sentinel-1 data for 
entire Antarctica (Baumhoer et al., 2023)

• Post-processing includes filtering and temporal compositing to re- 
     move artefacts from geolocation errors and limited data availability
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Background
Ice shelves buttress the outflow of glaciers along the 
coastline of Antarctica. Loss of their stability leads to 
increased discharge contributing to global sea level rise.
Thus, it is important to monitor ice shelf dynamics. The 
position of the calving front is a key parameter that has to 
be derived on long temporal scales in order to understand 
ongoing processes. The potential of SAR data has not yet 
been fully exhausted as data of early SAR satellites has only 
been used to a limited extent. Therefore, this study applies 
a deep learning framework to take advantage of the entire 
ERS AMI (VV polarisation) and Envisat ASAR (VV and HH 
polarisation) archive from 1992 to 2011 in West Antarctic 
Pine Island Bay, a region with drastic ongoing changes that 
requires detailed observation.
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Results
• The transfer of the deep learning 

framework proves suitable for the used 
data

• Mosaicking is effective to cope with uneven 
scene availability focusing on summer 
months 

• The resulting product comprises yearly, 
seasonal and monthly calving fronts (if data 
is available)

• Segmentation accuracy of 96%
• Mean distance measured accuracy of 355m
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Fig.2: Comparison of 
predicted and manually 
drawn calving front of a 
selected ERS testing scene. 

Fig.1: HED-Unet 
architecture (modified 
after Heidler et al., 2021)

Fig.4: Profile plots along centrelines of all ice shelves demonstrate differences 
in ice shelf geometry and basal topography. The vertical lines show changes 
in calving front position throughout the study period (topography data 
source: BedMachine Antarctica v2).

Fig.3: Time 
series of 
calving front 
position change 
along the 
centrelines for 
all investigated 
ice shelves. 
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Cosgrove Ice Shelf Conclusion and Outlook
• The deep learning framework proves to be an effective tool to deliniate ice 

shelf fronts based on ERS and Envisat data
• The time series reveal individual patterns for all ice shelves
• Overall, a picture of destabalisation becomes apparent, not only through 

retreat, but also through fracturing, disintegration events and loss of 
connectivity to lateral confinements

• Expansion of the approach to broader regions and longer time scales, and 
analysis of the resulting time series in synergy with other parameters should 
be pursued further


