Assessment of Future Climate Change Impacts on Water Resources of the Upper Kabul River Basin, Afghanistan Using SWAT model.

^a Department of Earth Sciences, Institute of Geographical Sciences, Applied Physical Geography, Environmental Hydrology and Resource Management, Freie Universität Berlin, Berlin, 12249, Germany.

1. Objective

To evaluate the climate change impacts on the water resources in the UKRB under RCP4.5 and RCP8.5 scenarios.

- > Developing a hydrological SWAT model for UKRB.
- > Evaluation of SWAT by calibration and validation
- > Performing bias correction of precipitation and temperature for baseline (1986-2005), and two future periods, 2040s and 2090s.
- > Analyzing the future impact of climate change on water availability for the 2040s and 2090s compared to the baseline period.

Fig.1: location of study area (Upper Kabul River Basin).

Tooryalay Ayoubi ^a*, Christian Reinhardt-Imjela ^a and Achim Schulte ^a

Fig.2: The climograph of Tangi Gulbahar station (2009-2019)

5. **Results**

Discharge hydrographs after calibration and validation of the model (Fig.5).

Table 1: Description of regional climate models selected for this study.

Driving GCM	Historical	RCPs 4.5 & 8.5	Institution	Resolution
CanESM2-CCCma	1951-2005	2006-2100	SMHI ²	0.44° x 0.44°
NOAA-GFDL-ESM2M	1951-2005	2006-2099	IITM ³	0.44° x 0.44°
MPI-ESM-LR	1961-2005	2006-2100	MPI-CSC ⁴	0.44° x 0.44°
MIROC5	1961-2005	2006-2100	SMHI ²	$0.44^{\circ} x 0.44^{\circ}$

REMO2009

WAS-44i¹

Fig.6: Taylor diagrams displaying a comparison of biascorrected for monthly precipitation maximum temperature, and minimum temperature vs observations during the baseline period (1968-2005).

Fig.7: The mean monthly results of Maximum temperature for the future period of 2040s and 2090s under RCP4.5 and RCP8.5 in UKRB.

Fig.9: (a) Annual hydrological parameters for baseline and future, and (b) Changes in annual hydrological parameters compared to the baseline under RCP 4.5 and RCP 8.5.

7. Conclusion

- Kabul river basin (UKRB).
- in evapotranspiration (ET) in UKRB.
- expected in summer (high water demand) season.

Fig.8: Future response of water flow compared to the baseline under RCP 4.5 and RCP 8.5 for Tang-i-Gulbahar, Shukhi and Tang-i-Saidan stations .

> Climate model projections indicated that monthly temperature shows an earlier warming backward shift in June instead of July in upper

> Climate change will impact the hydrology regime and will alter the pattern of snowfall to rainfall, increased surface runoff, and increased

> The mean annual surface runoff indicated an increase in both periods (2040s, 2090s) under both RCP4.5 and RCP8.5 scenarios, while a monthly decrease in summer runoff, and monthly increase in the winter and spring's runoff is expected.

> Consequently, frequent floods are expected to occur in the late winter and early spring, while droughts and less accessibility to water is