

Parameter-dependent multistable climate system "without climate change"

Autonomous ODE

 $\dot{x} = f(\lambda, x) = f_{\lambda}(x)$

generating semiflow $(\varphi_{\lambda}^t)_{t>0}$ on a compact subset of Euclidean space, with

mutually disjoint attractors ("stable states of the climate system")

for all but at-most-finitely-many λ -values, where

- $A_{i,\lambda}$ not a singleton, ...
- \rightarrow the quantitatively precise climate state is always changing!
- ... but is instead the support of a natural probability distribution $\mu_{i,\lambda}$.

"Natural": \exists neighbourhood U of $A_{i,\lambda}$ s.t.

$$fg \in C_b(U, \mathbb{R}), h \in L^1(U, \mathbb{R}),$$

 $\frac{1}{T} \int_U \int_0^T g(\varphi_\lambda^t x) dt h(x) dx \to \mathbb{E}_{\mu_{i,\lambda}}[g] \int_U h(x) dx \text{ as } T \to \infty.$

Heuristic interpretation: For each *i*, $\mu_{i,\lambda}$ is the probability distribution for what the current quantitative climate state $x(t_{now})$ is, conditional on the knowledge that for $t \approx -\infty$, the state x(t) was near $A_{i\lambda}$.

Now introduce "climate change"

Nonautonomous ODE

 $\dot{x} = f(\Lambda(t), x),$ $\Lambda(t) \to \lambda_{\pm} \text{ as } t \to \pm \infty$

generating nonautonomous semiflow $(\varphi^{s \to t})_{-\infty < s < t < \infty}$.

 $\Lambda(\cdot)$ represents "real-time (as opposed to quasistatic) parameter drift" \implies rate-induced phenomena.

Definition. Given $i \in \{1, \ldots, n(\lambda_{-})\}$, a natural probability distribution rooted at $A_{i,\lambda_{-}}$ is a time-dependent probability measure $(\mu_{i}^{t})_{t \in \mathbb{R}}$ such that:

 \exists neighbourhood U of $A_{i,\lambda_{-}}$ s.t.

$$\begin{split} \forall \, g \in C_b(U,\mathbb{R}), h \in L^1(U,\mathbb{R}), t \in \mathbb{R}, \\ & \frac{1}{T} \int_U \int_{t-T}^t g(\varphi^{s \to t} x) \, ds \, h(x) \, dx \ \to \ \mathbb{E}_{\mu_i^t}[g] \int_U h(x) dx \ \text{as} \ T \to \infty. \end{split}$$

Heuristic interpretation: If $(\mu_i^t)_{t \in \mathbb{R}}$ exists then $\mu_i^{t_{now}}$ is the probability distribution for what the current quantitative climate state $x(t_{now})$ is, conditional on the knowledge that for $t \approx -\infty$, the state x(t) was near $A_{i,\lambda}$.

Acknowledgement

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820970 (TiPES).

Natural measures of asymptotically autonomous systems

Julian Newman¹ Peter Ashwin¹

¹Department of Mathematics, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom

 $A_{1,\lambda}, A_{2,\lambda}, \ldots, A_{n(\lambda),\lambda}$

Tipping probability

Tipping. Given $A_{i,\lambda_{-}}$ for some $i \in \{1, \ldots, n(\lambda_{-})\}$ and $A_{j,\lambda_{+}}$ for some $j \in \{1, \ldots, n(\lambda_{+})\}$, with $A_{i,\lambda_{-}}$ and $A_{j,\lambda_{+}}$ not connected by a continuous branch of attractors $(A_{i(\Lambda(t)),\Lambda(t)})_{t \in \mathbb{R}}$: we say that the climate system tips from $A_{i,\lambda_{-}}$ to $A_{j,\lambda_{+}}$ if

• in the distant past, the quantitative climate state x(t) was near $A_{i,\lambda_{-}}$;

• in the distant future, the quantitative climate state x(t) will be near A_{i,λ_+} .

For singleton models of stable climate states, rate-induced tipping has been studied in [2]. For non-singleton attractor models of stable climate states, we now ask about **probability of tipping** [3].

Theorem [1]. Fix i and assume $(\mu_i^t)_{t \in \mathbb{R}}$ exists. Assume "reasonable assumptions": the attractors A_{i,λ_+} of $(\varphi_{\lambda_+}^t)_{t \ge 0}$ are all "robust", and for all $\varepsilon > 0 \exists$ nbhd O_{ε} of the complement of the union of the basins of the attractors $A_{i,\lambda_{+}}$ such that $\limsup_{t\to\infty} \mu_{i}^{t}(O_{\varepsilon}) < \varepsilon$. Then:

 $\exists p_{i,1}, \ldots, p_{i,n(\lambda_+)} \in [0,1]$ with $\sum_{j=1}^{n(\lambda_+)} p_{i,j} = 1$ s.t. for each j, for any nbhd U of A_{j,λ_+} contained in the basin of A_{j,λ_+} , we have $\mu_i^t(U) \to p_{i,j}$ as $t \to \infty$.

We call $p_{i,j}$ the probability of tipping from $A_{i,\lambda_{-}}$ to $A_{j,\lambda_{+}}$.

Existence of the natural probability distribution $(\mu_i^t)_{t \in \mathbb{R}}$

Assume that $\Lambda(\cdot)$ is monotonically increasing. Heuristically, if " $\Lambda(t) \to \lambda_{-}$ sufficiently fast as $t \to -\infty$ " then $(\mu_{i}^{t})_{t \in \mathbb{R}}$ exists. **Theorem** [4]. Fix *i*. Assume that the attractor $A_{i,\lambda}$ of $(\varphi_{\lambda}^t)_{t>0}$ and its natural distribution $\mu_{i,\lambda}$ are "robust" with "linear-response-like" behaviour". Let

 $r_0 = \sup\left(\left\{\frac{(x-y) \cdot (f(\lambda_-, x) - f(\lambda_-, y))}{|x-y|^2} : x, y \in A_{i,\lambda_-}, x \neq y\right\} \cup \left\{\text{max eigenvalue of } \frac{1}{2}\left(\frac{\partial f}{\partial x}(\lambda_-, x) + \frac{\partial f}{\partial x}(\lambda_-, x)^{\mathrm{T}}\right) : x \in A_{i,\lambda_-}\right\}\right).$ If there exists $r > r_0$ such that

$$\int_{-\infty}^{\text{arbitrary finite number}} e^{-rt} \left(d_{1-\text{Wass}}(\mu_{i,\Lambda(t)},\mu_{i,\lambda_{-}}) + d_{\text{Haus}}(A_{i,\Lambda(t)},A_{i,\lambda_{-}}) \right) + d_{\text{Haus}}(A_{i,\Lambda(t)},A_{i,\lambda_{-}}) + d_{\text{Haus}}(A_{i$$

then there exists a natural probability distribution rooted at $A_{i,\lambda}$.

Open question

The "linear-response-like behaviour" is specifically: there exist $\delta > 0$ and $C \ge 1$ s.t. for each $\lambda \in (\lambda_{-}, \lambda_{-} + \delta)$ one can find $\tilde{\delta}(\lambda) > 0$ s.t. for all $\lambda' \in (\lambda, \lambda + \tilde{\delta}(\lambda))$,

$$d_{1-\text{Wass}}(\mu_{i,\lambda},\mu_{i,\lambda'}) \leq C(d_{1-\text{Wass}}(\mu_{i,\lambda'},\mu_{i,\lambda_{-}}) - d_{1-\text{Wass}}(\mu_{i,\lambda'},\mu_{i,\lambda_{-}}) - d_{1-\text{Wass}}(\mu_{i,\lambda'},\mu_{i,\lambda'}) - d_{1-\text{Wass}}(\mu_{i,\lambda'},\mu_{i,$$

 $\mu_{\mathrm{ass}}(\mu_{i,\lambda},\mu_{i,\lambda_{-}}))$ $d_{\text{Haus}}(A_{i,\lambda}, A_{i,\lambda'}) \leq C(d_{\text{Haus}}(A_{i,\lambda'}, A_{i,\lambda_{-}}) - d_{\text{Haus}}(A_{i,\lambda}, A_{i,\lambda_{-}})).$ Question: Does this follow from typical linear response assumptions? And/Or is this reasonable to expect if $A_{i,\lambda}$ is a "sufficiently nice"

(e.g. uniformly hyperbolic) attractor of $(\varphi_{\lambda}^t)_{t>0}$ (assuming f is C^{∞} in (λ, x))? Alternatively, can this condition be dropped?

References

 $(t_{\lambda_{-}}) + d_{\sup}(f_{\Lambda(t)}, f_{\lambda_{-}}) dt < \infty$

^[1] Peter Ashwin and Julian Newman. Physical invariant measures and tipping probabilities for chaotic attractors of asymptotically autonomous systems. The European Physical Journal Special Topics, pages 1–14, 2021.

^[2] Peter Ashwin, Clare Perryman, and Sebastian Wieczorek. Parameter shifts for nonautonomous systems in low dimension: bifurcation-and rate-induced tipping. Nonlinearity, 30(6):2185, 2017.

^[3] Bálint Kaszás, Tímea Haszpra, and Mátyás Herein. The snowball earth transition in a climate model with drifting parameters: Splitting of the snapshot attractor. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(11):113102, 2019.

^[4] Julian Newman and Peter Ashwin. Physical measures of asymptotically autonomous dynamical systems. Stochastics and Dynamics, Online Ready, 2023.