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A B S T R A C T   

Intercity patient mobility reflects the geographic mismatch between healthcare resources and the population, 
and has rarely been studied with big data at large spatial scales. In this paper, we investigated the patterns of 
intercity patient mobility and factors influencing this behavior based on >4 million hospitalization records of 
patients with chronic kidney disease in China. To provide practical policy recommendations, a role identification 
framework informed by complex network theory was proposed considering the strength and distribution of 
connections of cities in mobility networks. Such a mobility network features multiscale community structure 
with “universal administrative constraints and a few boundary breaches”. We discovered that cross-module visits 
which accounted for only 20 % of total visits, accounted for >50 % of the total travel distance. The explainable 
machine learning modeling results revealed that distance has a power-law-like effect on flow volume, and high- 
quality healthcare resources are an important driving factor. This paper provides not only a methodological 
reference for patient mobility studies but also valuable insights into public health policies.   

1. Introduction 

Accessibility to healthcare services is a key factor affecting human 
health. Currently, the uneven distribution of medical resources is still a 
common phenomenon worldwide (Barber et al., 2017; Weiss et al., 
2018). This imbalance in resource allocation, especially for high-quality 
medical care, has greatly contributed to the intercity mobility of 
patients. 

Human mobility has been extensively studied owing to its 

importance in real-world applications such as urban planning (Hillier 
et al., 2010; Kitamura et al., 2000), epidemic modeling (Jia et al., 2020a; 
Tizzoni et al., 2014), and traffic forecasting (Jiang et al., 2009; Wang 
et al., 2012). Researchers have made sustained progress in this field with 
an abundance of mobility data sources such as banknotes (Brockmann 
et al., 2006), mobile phones (Song et al., 2010; Gonzalez et al., 2008), 
GPS devices (Bazzani et al., 2010; Liang et al., 2012; Riccardo et al., 
2012), and location-based social network (LBSN) services (Noulas et al., 
2012). Patient mobility, as an important subset of human mobility, 
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reflects the level of accessibility and equity of healthcare resources. In 
the field of urban studies, several scholars have examined patient 
mobility patterns within the city using navigation or traffic trajectory 
data (Gong et al., 2021; Wang et al., 2020a; Xing & Ng, 2022). 

However, in addition to intracity patient mobility, there are massive 
intercity patient flows between cities. Intercity patient flows, either 
within (Aggarwal et al., 2018; Beal et al., 2019; Borno et al., 2018; Diaz 
et al., 2019; Diaz et al., 2020; Jia et al., 2015; Jia et al., 2020b; Kornelsen 
et al., 2021; Pekala et al., 2021; Sharma et al., 2016; Xu et al., 2020a) or 
across (Andritsos & Tang, 2014; Azzopardi-Muscat et al., 2018; Baeten, 
2014; Chikanda & Crush, 2019; Glinos et al., 2010a; Glinos et al., 2010b; 
Hanefeld et al., 2015; Laugesen & Vargas-Bustamante, 2010; Legido- 
Quigley et al., 2007; Lunt & Mannion, 2014) countries, have recently 
drawn the attention of public health scholars. Existing studies have 
investigated mainly the burden and outcome of patient travel (Beal 
et al., 2019; Borno et al., 2018; Chikanda & Crush, 2019; Diaz et al., 
2019; Diaz et al., 2020; Kornelsen et al., 2021; Pekala et al., 2021; 
Sharma et al., 2016; Xu et al., 2020a), motivations for such behavior 
(Aggarwal et al., 2018; Glinos et al., 2010a; Hanefeld et al., 2015; 
Laugesen & Vargas-Bustamante, 2010; Lunt & Mannion, 2014) and 
relevant policy issues (Andritsos & Tang, 2014; Azzopardi-Muscat et al., 
2018; Baeten, 2014; Glinos et al., 2010b; Jia et al., 2015; Jia et al., 
2020b; Legido-Quigley et al., 2007). Recently, a few studies have 
employed patient mobility big data to analyze intercity patient flows 
(Wang et al., 2020b; Wang et al., 2021a; Wang et al., 2021b; Wang & 
Wang, 2021). In China, while scholars have paid attention to intercity 
mobility networks, there is still a lack of nationwide research supported 
by real-world data (Fu et al., 2021; Yan et al., 2022). 

According to government statistics, China has a large number of 
patients who seek healthcare across cities. From 2014 to 2017, the 
percentage of nonlocal patients in tertiary hospitals nationwide was 
approximately 7.9 %, with the highest percentage in the surgery 
department reaching 24.2% (National Health Commission of the Peo-
ple’s Republic of China, 2019). The intercity health-seeking behavior of 
Chinese patients is influenced by both push and pull factors. On the one 
hand, the lack of a rigid referral system has allowed patients to choose 
hospitals freely. On the other hand, the procedures for nonlocal medical 
insurance reimbursement are more complicated, and the reimbursement 
rate is also usually lower (Yan et al., 2022). 

Improving the accessibility and quality of healthcare is a top priority 
in many countries (Barber et al., 2017). Over the past decade, China has 
been undergoing a series of healthcare reforms to achieve universal 
health coverage (Tao et al., 2020). To achieve “healthy” patient mobility 
and reduce unnecessary and long-distance patient mobility, the Chinese 
government has applied a series of new policy practices, such as estab-
lishing healthcare alliances (HCAs) and regional medical centers, 
providing counterpart support of high-quality hospitals, developing 
telemedicine, and eliminating barriers to reimbursement of intercity 
medical expenditures in pilot areas (Yan et al., 2022; National Health 
Commission of the People’s Republic of China, 2019; Tao et al., 2020). 

Most existing papers on intercity mobility from the perspective of 
urban research focus on the whole population (Hu et al., 2020; Pan & 
Lai, 2019; Zhang et al., 2020a). Less attention has been paid to patient 
mobility, but related studies also have significant theoretical and prac-
tical implications. On the one hand, public health policymakers need to 
have a quantitative understanding of the current state of patient 
mobility, such as complex network structure indicators like key nodes, 
key edges and city clusters. These findings will help complement the 
series of ongoing healthcare reforms mentioned above. For instance, the 
identification of supply and demand hubs can inform the development 
of regional medical centers. For researchers, it is also an interesting topic 
whether there are some universal patterns of patient mobility like the 
results revealed by human mobility studies, such as the scaling laws and 
geographic heterogeneity. On the other hand, examining the relation-
ship between patient mobility and cities' various characteristics is also 
an important research topic. This knowledge will not only improve our 

understanding of how human behavior is influenced by city features but 
also help us understand and predict the impact of macro planning policy. 
The results have implications for optimizing the distribution of various 
resources, and will ultimately contribute to the goal of reducing uneven 
development and improving public service inequality. 

Electronic medical record data (Huang et al., 2019; Xiong & Luo, 
2020; Yang et al., 2020) contain patient location information and offer 
high-volume, high-accuracy and rich information on patient attributes. 
This data source has rarely been used in urban studies. With improved 
data availability, it can be expected that its academic and practical 
values will be fully explored, providing new opportunities for scholars to 
quantitatively study patient mobility at large geographic scales. 

In this paper, we conducted a series of quantitative analyses of pa-
tient mobility data and discussed the implications of these results for 
ongoing public health policies and subsequent research. We first 
explored the mobility patterns of millions of patients by constructing an 
intercity patient mobility network (IPMN) based on a national database 
and compared the results with those obtained from human mobility 
studies. Next, we examined the basic properties and multiscale com-
munity structures of the constructed IPMN. We then designed a frame-
work to identify cities' roles in the IPMN so that we could provide 
different policy advice. Finally, we utilized traditional spatial interac-
tion and machine learning methods to model patient mobility and 
identify influential factors. 

2. Data 

2.1. Mobility data 

Patient mobility data were extracted from the medical record front 
page (MRFP) data of the hospital quality monitoring system (HQMS), 
which records patients' geographic information, including their current 
residential addresses. 

The HQMS is a mandatory patient-level national database for hos-
pital accreditation by the National Health Commission (NHC) of the 
People's Republic of China. As of December 2018, HQMS covered >75 % 
of tertiary hospitals in 31 provinces, autonomous regions and munici-
palities directly under the central government (excluding Hong Kong, 
Macao and Taiwan). Tertiary hospitals refer to those hospitals that have 
at least 500 beds and are ranked as top-level hospitals in the Chinese 
medical system. 

The MRFP provides a standardized discharge summary that contains 
346 patient-level variables, including demographic characteristics, 
discharge diagnoses, procedures, and medical expenses. As part of 
stringent standard practice in China, MRFP has legal validity and must 
be filed by doctors who have the most accurate and comprehensive 
understanding of the patient's medical condition. Records of patients 
with chronic kidney disease (CKD, as both the primary diagnosis and the 
first two secondary diagnoses based on ICD-10 coding (Zhang et al., 
2020b)) were extracted from the HQMS. Data from other diseases were 
not used due to limited data availability. However, CKD is one of the 
major emerging chronic diseases that have received much attention in 
recent years, and its disease burden and consumption of healthcare re-
sources are very high compared to those of other chronic diseases (Yang 
et al., 2020; Yang et al., 2022). Second, healthcare resources for CKD are 
relatively scarce and unevenly distributed; thus, patients are more likely 
to seek nonlocal healthcare services. This study was approved by the 
Ethics Committee of Peking University First Hospital (2020-018). 
Acquisition of informed consent was exempted. More detailed de-
scriptions of these data sources can be found in existing literature 
(Huang et al., 2019; Yang et al., 2020). 

2.2. Urban socioeconomic data 

To model intercity mobility and identify important factors, we 
collected multisource data to characterize cities' socioeconomic 
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conditions, medical resources and transportation capability, creating 45 
metrics. Detailed metric names, meanings and data sources are listed in 
Supplementary Table 1. Most statistical metrics were obtained from the 
China City Statistical Yearbook 2015 (National Bureau of Statistics of 
China, 2015) (a city in this study refers to the administration area of a 
municipality). 

The population data were extracted from LandScan, a widely used 
resident population dataset combining the fine-resolution demographic 
and geographic data and state-of-the-art remote sensing techniques 
(Bright et al., 2016). 

Intercity flight and train information was obtained from the official 
platform of the Railway Customer Service Center of China and the Civil 
Aviation Administration of China. The shortest traffic time between 
cities was calculated as edge weights to construct networks with 
different transportation modes. A series of network-based metrics, such 
as degree centrality and closeness centrality, were then inferred 
(Freeman, 1978). 

To measure cities' ability to provide high-quality healthcare services, 
we obtained the total number of tertiary grade A hospitals and high-level 
nephrologist doctors. Tertiary grade A hospitals refer to the best level of 
Chinese tertiary hospitals. To calculate the total number of tertiary 
grade A hospitals, we first retrieved point-of-interest (POI) data for the 
type “tertiary grade A hospital” from the web map service provider 
Amap (lbs.amap.com) and then aggregated the data based on 
geographical distance to eliminate duplicate records, i.e., each POI 
represents a unique hospital. 

We consider doctors who registered on online paid medical consul-
tation platforms as proxies for high-level and well-recognized doctors. 

Our data come from two leading companies, Haodaifu (“Good Doctor” in 
Chinese, www.haodf.com) and WeDoctor (www.guahao.com). Amid the 
booming growth of Chinese online healthcare platforms, the two leading 
companies have already served tens of millions of patients, thus indi-
cating the representativeness of the dataset (Li et al., 2019; Liu, 2021; 
Yang et al., 2019). 

3. Methods 

The framework of this study is shown in the Fig. 1. 

3.1. Community detection of mobility network 

Modules (or communities, clusters) in complex networks refer to a 
group of nodes (in this study, cities) that have strong connections. In this 
paper, we first adopted community detection algorithms to infer com-
munity structure, as it is one of the most important properties of com-
plex networks. Two scale-fixed algorithms, modularity optimization and 
Infomap, were employed to detect how vertices were organized into 
modules. To obtain a finer community partition, we applied another 
resolution-limit-free method (constant Potts model optimization, CPM) 
(Fortunato & Barthelemy, 2007). Modules of different sizes can be ob-
tained by adjusting the resolution parameter of this method. 

3.1.1. Infomap algorithm 
Infomap is a dynamics-based approach that turns community 

detection into a coding problem (Rosvall et al., 2010; Rosvall & Berg-
strom, 2008). When performing an infinite random walk on the network, 

Fig. 1. Study framework.  
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the paths can be efficiently described by Huffman coding. The average 
description length of a single step is given by an information-theoretic 
map equation. The goal of the Infomap method is to find a partition M 
that minimizes the expected description coding length L(M). That is, 

(1) 

This equation consists of two terms, expressing the Shannon entropy 
of the movement within and between communities weighted by their 
frequency of occurrence. Here, is the probability that the random 
walk enters communities at any given step. H(L ) is the entropy of the 
codes of communities. The weight is the fraction of inside-module 
movements in module i plus the probability of exiting module i. 
H
(
P i) is the entropy of the inside-module movements, including the exit 

code for module i. 

3.1.2. Modularity optimization 
Modularity is a structure-based quality function that measures the 

goodness of a partition (Newman, 2006). A high modularity score Q 
indicates that the nodes are densely connected internally within each 
community but sparsely connected across different communities. For 
directed networks, it is defined as (Leicht & Newman, 2008): 

Q =
1
m
∑

i,j

(

Ai,j −
kout

i kin
j

m

)

δ(i, j), (2)  

where m is the total edge weight, Ai, j represents the weight of the edge 
from i to j, ki

out and kj
in refer to the out-degree of i and in-degree of j, 

respectively, and δ(i, j) equals 1 if i and j belong to the same community 
and 0 otherwise. 

One of the most commonly used methods to optimize modularity is 
the Louvain algorithm introduced by Blondel (Blondel et al., 2008). It is 
a heuristic method that enables rapid unfolding of communities with 
good partition quality. However, the Louvain algorithm may yield 
arbitrarily badly connected communities (Traag et al., 2019). To address 
this problem, Traag (Traag et al., 2019) recently proposed the Leiden 
algorithm, which improves on the Louvain algorithm and guarantees 
that communities are well connected. In the present study, we used the 
Leiden algorithm to optimize modularity and the CPM, as discussed 
below. 

3.1.3. Constant Potts model optimization 
Community detection methods may suffer from the so-called reso-

lution limit that prevents the identification of communities smaller than 
a certain scale (Fortunato & Barthelemy, 2007). Modularity depends on 
the total size of the network and on the degree of interconnectedness of 
the modules (Fortunato & Barthelemy, 2007; Good et al., 2010). For the 
map equation in the Infomap method, the resolution limit is set by the 
total number of links between modules (Kawamoto & Rosvall, 2015). In 
practice, it is suggested that the resolution limit of the map equation is 
orders of magnitude smaller than the modularity, which makes it less 
restrictive (Kawamoto & Rosvall, 2015). 

CPM is an alternative to modularity that was proven to be resolution- 
limit-free (Traag et al., 2011). This quality function employs a resolution 
parameter that can be used to explore the community structure at 
various scales. A higher resolution leads to more communities and thus 
provides finer information on the community structure of networks. It is 
formulated as a sum over communities: 

Q =
∑

c

[

mc − γ
(

nc
2

)]

, (3)  

where mc is the number of internal edges of community c, nc is the 
number of nodes in community c, and γ is the resolution parameter. 

3.2. Identification of the functional roles of cities in mobility network 

Identifying the roles of nodes is vital to representing complex net-
works and understanding their structure at the mesoscale. Guimerà and 
Nunes Amaral (Guimerà & Nunes Amaral, 2005) proposed a framework 
to divide nodes into different roles according to their intra- and inter-
community connection patterns. This classic framework is based on two 
parameters: an indicator of within-module hubness and an index 
describing the distribution of cross-module links of a node. Despite its 
wide application, some scholars have pointed out its limitations and 
developed new parameters accordingly (Dugué et al., 2015; Klimm 
et al., 2014; Pedersen et al., 2020; Xu et al., 2020b). 

In this paper, we introduce a framework to assess directed networks 
like the intercity patient mobility network (IPMN). Our framework is 
based on two kinds of parameters: hubness indices measure how “well- 
connected” a node is to other nodes inside or outside its module, and the 
participation index measures how “well-distributed” the links of a node 
are to different destinations (Guimerà & Nunes Amaral, 2005; Xu et al., 
2020b). We examine cities' roles at both the regional and national scales. 

3.2.1. Hubness index 
We use two hubness indices Zi and Bi to measure the strength of a 

node's connections to other nodes inside and outside its own module, 
respectively. 

The inside-module hubness index Zi is defined as 

Zi =
kiT − kT

σkT
, (4)  

where kiT is the total weights of links between node i and other nodes in 
its own module T; and kT and σkT are the mean and the standard devi-
ation of intramodular link weights over all the nodes in module T, 
respectively. 

The outside-module hubness index Bi is defined as 

Bi =
miT − mT

σmT
, (5)  

where miT is the total weights of links between node i and other nodes 
outside of its own module T; and mT and σmT are the mean and the 
standard deviation of out-module link weights over all the nodes in 
module T, respectively. 

3.2.2. Participation index 
We apply two participation indices to characterize the distribution of 

a node's connections inside and outside the modules, denoted as PZi and 
PBi, respectively. 

To calculate the participation index Pi, we utilize the concept of 
participation vector Pi (Klimm et al., 2014). From the regional 
perspective, we propose an inside-module participation vector PZi, 
whose elements represent the probabilities of links between node i and 
other nodes in its own module T. From the national perspective, we 
construct an outside-module participation vector PBi to capture the 
probabilities of links between node i and modules other than T. For 
instance, suppose a network in which node i has links equally distributed 
to 3 nodes within its module and 3 other modules; then both PZi and PBi 
will be represented as 

( 1
3,

1
3,

1
3
)
. 

To obtain participation indices PZi and PBi, we calculate the standard 
deviation of the participation vector σ(Pi) and compare it with the most 
extreme case σmax(m), i.e., all links of node i are connected to a single 
node or module. Here, m refers to the number of other nodes inside 
module T or the number of other modules. Therefore, the participation 
index is defined as 

Pi = 1 −
σ(Pi)

σmax(m)
= 1 −

m
̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ σ(Pi). (6) 

For a node having links equally distributed to other nodes inside its 
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module (or other modules), we have PZi = 0 (or PBi = 0). For a node that 
connects to only a single node inside its module (or only one other 
module), we have PZi = 1 (or PBi = 1). 

3.2.3. Role identification framework 
By calculating the hubness indices (Zi and Bi) and participation 

indices (PZi and PBi), we can obtain two parameter spaces, Z − PZ and B 
− PB, describing the position each node takes in the network from 
regional and national perspectives. Considering directions, we end up 
with four parameter spaces, Zsupply − PZsupply and Bsupply − PBsupply for 
incoming flows and Zdemand − PZdemand and Bdemand − PBdemand for out-
going flows. 

We classify cities into four types of roles according to their positions 
in the parameter spaces. Cities with a hubness index >2 are defined as 
hubs. Hubs are further divided into three categories according to the 
extent of their connections with other cities. Those with a participation 
index of 0–0.3 are defined as exclusive hubs, and they are connected to 
only a few cities. Those with an index of 0.3–0.6 are defined as inclusive 
hubs, and they have relatively extensive connections. Those with an 
index of 0.6–1 are defined as extensive hubs, and they have the most 
extensive connections. 

3.3. Patient mobility modeling and interpretation 

To model patient mobility, a traditional gravity model and three 
machine learning methods were employed. We used multisource data to 
construct a dataset to characterize cities from three aspects: social 
economy, medical resources, and traffic convenience (refer to the Sup-
plementary Information for detailed features). Data were randomly 
divided into a training set and a testing set at a ratio of 7:3. The effec-
tiveness of the models was evaluated by calculating the root mean 
squared error (RMSE) and the goodness-of-fit (R2) for the testing set. 

3.3.1. Gravity model 
The gravity model is one of the most common spatial interaction 

models. In Zipf's equation proposed in 1946, the intensity of the mobility 
flow from i to j can be approximated by Tij∝

PiPj
rij

, where Pi and Pj are the 
respective populations and rij is the distance between i and j (Zipf, 1946). 
To predict the intensity of intercity patient flow, we developed a gravity 
model that takes into account the expected medical benefits and the 
distance decay effect (Liu et al., 2014). It is defined as follows: 

Wij = aPb
i Pc

j

(
Mj

Mi

)d

f
(
dij
)e
, (7)  

where Wij is the number of patients going to city j from city i, Pi and Pj are 
the population of origin and destination, respectively, Mj

Mi 
is the ratio of 

influential CKD doctors, and f(dij) is the complementary cumulative 
distribution function of patients' travel distance derived from empirical 
data. To extract feature importance, we normalized the input data so 
that the coefficients obtained were comparable. 

3.3.2. Machine learning models 
Three machine learning models were also employed, including 

support vector machine (SVM), random forest (RF), and eXtreme 
gradient boosting (XGBoost) (Breiman, 2001; Chen & Guestrin, 2016; 
Cortes & Vapnik, 1995). A fivefold cross-validation was performed on 
the training set for hyperparameter tuning using a grid search strategy. 
Despite their impressive performance in real-world applications, a major 
drawback of machine learning algorithms is the lack of interpretability. 
They are often referred to as “black boxes” because it is difficult to infer 
how feature variables affect model prediction. To address this issue, we 
adopted a novel technique in the field of explainable artificial intelli-
gence (XAI), namely, the Shapley additive explanation (SHAP) method 
(Adadi & Berrada, 2018). It is a unified framework that allocates the 

impact of each feature on a particular prediction based on Shapley 
values originating from game theory (Lundberg et al., 2018; Lundberg 
et al., 2020; Lundberg & Lee, 2017). 

SHAP provides a local perspective to understand the impact of fea-
tures. For each prediction, we calculated the SHAP value of each feature, 
which holds an additivity property that can be expressed by: 

f (x) = ϕ0(f , x)+
∑m

i=1
ϕi(f , x), (8)  

where f(x) is the prediction, ϕ0(f,x) is the expected baseline value of the 
model over the training data (E[f(x)]), m is the number of features, and 
ϕi(f,x) is the SHAP value of feature i. 

4. Results 

4.1. Distribution of travel distance 

We extracted a total of 4,353,885 inpatient records of patients with 
CKD over a five-year period from 2014 to 2018 (see the Methods sec-
tion). This dataset has been preanonymized, and patients' geo-location 
information has been aggregated to the city level. Over years one 
through five, the proportion of cross-city inpatients to the total number 
was 22.2 %, 22.1 %, 22.4 %, 22.9 % and 22.3 %, respectively. The pa-
tient mobility flow map is shown in Fig. 2. The figure shows that 
dominant intercity mobility flows are confined to provincial-level 
administrative regions. 

Using the obtained nationwide mobility flow data, we found that the 
truncated power law distribution significantly outperformed other 
candidate distributions (p value < 0.001) for the tail of the displacement 
distribution (150 km above) (Clauset et al., 2009), where β=1.81 and 
k=1758.5: 

P(r) ∼ r− βexp( − r/k). (9) 

In addition, we examined differences among diverse groups of pa-
tients. We first classified cities into high-, middle- and low-income 
classes according to their contributions to the gross domestic product 
(GDP). The result is shown in Fig. 3b. The displacements of patients in 
high-income cities are longer than those of patients in other cities. Such 
a difference becomes largest when P = 0.2, which means that approxi-
mately 80 % of displacements in low- and middle-income cities are 
<300 km, and for high-income cities, this upper limit reaches 800 km. 
This finding suggests that most patient mobility flows in low- and 
middle-income cities are confined to the provincial level, while patients 
in high-income cities have more opportunities to seek healthcare across 
provinces. 

We also examined behavioral differences among patients in different 
physical geographic regions (refer to the Supplementary Information for 
division maps). First, we used the well-known Hu Line, which divides 
China into densely populated east and sparsely populated west. The 
results illustrate that patients from west of the Hu Line have longer 
displacements, and the difference between the two is reflected mainly in 
travel exceeding 200 km (Fig. 3c). Regional differences are also reflected 
in Fig. 3d, which further divides the country into four regions: the south, 
the north, the northwest, and the Qinghai-Tibet Plateau. For patient 
flows exceeding 100 km, the distances traveled by patients from the 
southern region are often less than those from the other three regions. 
Among them, patients from the northwest have the longest travel dis-
tances, reflecting the poor accessibility of medical resources in this 
region. 

4.2. Basic topological properties of the IPMN 

We calculated the average weight of each intercity edge over 5 years 
to construct a weighted directed network, since the proportion of cross- 
city visits was relatively stable during this time. The basic topological 
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properties of the IPMN are reported in Fig. 4. The IPMN is a network 
with 358 nodes (i.e., cities) and 6824 edges (i.e., patient flows). The 
average degree <K> is 587.288, and the average shortest path length 
<L> is 1.562. 

The assortativity coefficient is the Pearson correlation coefficient of 
the degree between pairs of linked nodes (Newman, 2003). It measures 
the tendency that nodes are preferentially connected with other nodes 
with similar degree values. We investigate the relationship of in-degrees 
between two ends of the connected edges, expressed by the in- 
assortativity coefficient As_in. For out-degrees, we calculated the out- 
assortativity coefficient As_out. We discovered that the IPMN shows a 
weak disassortativity with respect to in-degrees (As_in = − 0.087); in 
other words, cities with high in-degrees are more likely to be linked to 
cities with low in-degrees. Moreover, the out-assortativity coefficient 
suggests a slight tendency of assortative mixing (As_out = 0.135), i.e., 
cities connected to high out-degree destinations usually have large 
outflows as well. 

This pattern is also verified in maps of in-degrees and out-degrees. As 
seen in Fig. 4b, cities in the central region of China have a relatively high 
out-degree, and these cities generally have a large population with 
relatively good economic conditions but weak medical resources. In 
contrast, Fig. 4c shows a clear polarization, indicating that high-quality 
medical resources are aggregated in a few cities. 

We also examined the distributions of in-degrees and out-degrees 
using the statistical method proposed by Clauset (Clauset et al., 2009). 
The log-normal distribution fits the data well and significantly out-
performs other candidate distributions, including the power law, expo-
nential and truncated power law (p value < 0.001) (Alstott et al., 2014). 
The complementary cumulative distributions of in-degrees and out- 
degrees are shown in Fig. 4d and e, respectively. 

4.3. Multiscale community structure of the IPMN 

As shown in Fig. 5a and b, the two scale-fixed community detection 
algorithms, modularity optimization and Infomap, lead to similar par-
titions. We summarize the results as “universal administrative con-
straints and a few boundary breaches”. Cities tend to cluster in the same 
provincial region because they have similar policies and cultural 

practices. However, several cities have tighter links with other provinces 
than their own, breaking this administrative boundary. We classify our 
findings in community detection into three types. The type A module is 
made up of individual provincial regions, the type B module is composed 
of multiple provincial regions, and the type C module contains the 
“boundary breakers” mentioned above. 

There are two major differences between the two algorithms, i.e., the 
northwest C2 and southeast C3 modules obtained by modularity opti-
mization were refined into multiple modules with the Infomap algo-
rithm. Both methods grouped northeastern China into one module, C1, 
which indicates Beijing's strong single core position in this region. In 
addition, both methods grouped Shanghai, Zhejiang, Jiangsu and Anhui 
into the same module B1, which reflects the influence of the Yangtze 
River Delta urban agglomeration. The influence of urban agglomera-
tions can also be seen in many other places. For instance, the Beijing- 
Tianjin-Hebei, Pearl River Delta, and Chengdu-Chongqing urban ag-
glomerations (for further literature on Chinese urban agglomerations, 
see reference (Fang, 2015)). 

Boundary breach is also an interesting phenomenon in regional 
development. Inner Mongolia, the province with the longest latitudinal 
geographical distance, was divided into two modules, C1 and C2, by 
both algorithms. Module C4 as obtained by modularity optimization 
takes in two cities on the edge of Yunnan and Guizhou provinces; 
module C4 as identified by Infomap absorbs several cities in Gansu, and 
module C6 absorbs the southernmost city in Jiangxi. These cities are 
attracted by the richer medical resources of nearby provinces, thus 
alleviating the constraining effect of provincial administrative regions. 

CPM optimization, a resolution-limit-free algorithm, was applied to 
explore the network structure of the IPMN at a finer scale. By adjusting 
the resolution parameter γ, we obtained submodules of the IPMN 
(Fig. 5c and d). 

This partition further divided the large modules into small ones 
based on the results of previous methods. For example, the original 
module C1 was divided into C1, C2, C3 and C4, i.e., four provincial 
dominant submodules, while cities with closer connections in the 
Yangtze River Delta urban agglomeration were identified as module C8; 
the Chengdu-Chongqing urban agglomeration was separated from pre-
vious large modules. In addition, some cities are identified as individual 

Fig. 2. Patient mobility flow map. White dots represent cities, and gray lines are the boundaries of Chinese provincial-level administrative regions. The edges are set 
to three gradient colors according to the hierarchy of weights. 
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clusters, and we merged them into adjacent submodules for the conve-
nience of analysis (Fig. 5d). 

With a relatively high quality of partition (modularity score Q =
0.736), CPM optimization yielded submodules that are relatively uni-
form in geographical area, making them potentially appropriate units 
for providing practical policy advice. Therefore, we term such divisions 
“hospital service modules” (HSMs) to study the regional characteristics 
of patients' healthcare-seeking behavior (Fig. 5d). 

4.4. Mobility flow across HSMs 

To validate the rationality of using the HSM as the basic zoning unit, 
we calculated the proportion of intramodular flows. The result shows 
that the proportion of flows within the HSM reaches 80.0 %, while the 
proportion of flows within the provincial administrative districts is 74.9 
%, which indicates that HSMs can better describe the community 
structure of the IPMN. 

We further calculated the cost of the medical visit flows inside and 
outside the HSMs. Here, we consider geographic distance as a proxy for 
medical cost, as a longer distance indicates a higher payment burden. In 
addition, we calculated the scaled distance considering the difference in 
affordability between the origin and the destination. In particular, we 

use the ratio of the mean wage of employees and workers between the 
two cities as a scaling factor. This dataset originates from the China City 
Statistical Yearbook (National Bureau of Statistics of China, 2015), which 
covers 86 % of the patient flow data. For each edge in the IPMN, its cost 
is defined as the product of the great circle distance between two cities 
and the intensity (number of patients) of that edge. 

The distribution of link weight, distance cost and scaled distance cost 
of visits inside and outside HSMs are shown in Fig. 6. Notably, cross- 
module healthcare seeking flows accounted for 52.5 % of the distance 
with 20 % of the total link strength, indicating that a large percentage of 
patients seek medical treatment over long distances, which also makes 
the entire system quite uneconomic. If the income gap between origin 
and destination is taken into consideration, this proportion rises to 54.8 
%. This result shows that most patients travel from cities with poorer 
economic conditions. Such an income gap will further amplify the 
burden of seeking nonlocal medical care (Table 1). 

4.5. Cities' roles in the IPMN 

Cities' positions in 4 parameter spaces are shown in Fig. 7 (for map 
visualizations, see the Supplementary Information), and the functional 
roles of the cities in the IPMN are well captured by the subfigures. 

Fig. 3. Complementary cumulative distribution of patient's travel distance. a. Fitted by different functions. b. Patients divided by economic status. c. Divided by Hu 
Line. d. Divided by four physical geographic regions. Percentages in parentheses refer to the ratio of nonlocal visits. 
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The patient outflow reflects the situation on the demand side (Fig. 7a 
and b); we first focus on the situation of cross-module outflows because 
they represent the behavior of long-distance healthcare seeking. Fig. 7a 
shows that the hubness of a city is facilitated by population and demand; 
that is, cities with large populations or low levels of medical care re-
sources in this module tend to become demand hubs. The so-called four 
first-tier cities (Beijing, Shanghai, Guangzhou and Shenzhen) and 
Chongqing, which have the largest city-wide populations, were all 
identified as hubs. The diversity of cross-module healthcare-seeking 
choices is driven by cities' economic conditions. As shown in the figures, 
cities with more developed economies tend to have more choices and 
greater participation indices. 

In comparison, we pay attention to the parameter space for cross- 
module inflows. Fig. 7c shows that cities identified as hubs have un-
dertaken many incoming flows that do not originate from this module. 
Among them, exclusive hubs and inclusive hubs are regional supply 
centers that accept patients mainly from neighboring provinces. Exten-
sive hubs accept more diverse inflows and thus can be regarded as na-
tional centers. Beijing, Shanghai and Guangzhou have the highest 
hubness index, showing their status as nationwide high-quality medical 
centers. As a rapidly developing city, Shenzhen's lack of medical re-
sources is also reflected in its roles, and it was not identified as a hub 
from either the inside-module or outside-module supply perspectives. 

This outshining of provincial capitals is also reflected in the role of 
cities from the perspective of inside-module outgoing and incoming 
flows, as shown in Fig. 7d. The two figures show a symmetrical trend, 
meaning that patients move inside the module with obvious preferences, 

so supply centers receive a wide range of inflows from cities with fewer 
choices for nonlocal healthcare. Most hubs identified in Fig. 7b are 
relatively underdeveloped cities, while in Fig. 7d, a considerable num-
ber of provincial capital cities are identified as supply centers, reflecting 
their primacy advantages. 

4.6. Mobility models and influential factors 

The results of model validation are shown in Fig. 8. We constructed a 
traditional gravity model and three machine learning models, namely, 
SVM, RF, and XGBoost, with a multisource city feature dataset to predict 
the number of patients traveling between cities. The XGBoost model 
achieved the best performance (R2=0.77, RMSE = 59.0). To understand 
the impact of individual features on the model predictions, we adopted 
the SHAP framework to explain the XGBoost model. 

We calculated each feature's contribution to the difference between 
the predicted value and the baseline value for each sample, i.e., the 
SHAP value. The fifteen variables with the highest mean absolute SHAP 
values are shown in Fig. 9a. The three variables with the largest impact 
on model prediction are distance (Distance) between the two cities, 
whether the two cities are in the same HSM (Region_flag) and the number 
of influential kidney doctors per capita at the destination (Doc_renal_per, 
data obtained from online healthcare platforms, see 2.2 for details). 

As seen in Fig. 9b, the effect of distance is nonlinear, with close 
distances adding the predicted values up to >600 but long distances 
reducing the predicted values by no >200. We use Region_flag to encode 
whether the two cities are in the same HSM, with 1 representing that 

Fig. 4. Basic topological properties of the IPMN. a. Basic metrics of the IPMN, including the number of nodes and edges, the average of degrees and shortest path 
lengths, the assortativity coefficient of out-degrees and in-degrees. b–c. Cities' out-degrees and in-degrees, with city boundaries indicated in gray. d–e. Comple-
mentary cumulative distributions of out-degrees and in-degrees. 
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both are in the same HSM and 0 indicating the opposite. As a distance- 
related variable, it remains the second most important feature, indi-
cating that the model captured other information implied by it, such as 
the fact that the same module tends to have similar cultural habits or be 
in the same administrative unit. We obtained the number of renal doc-
tors in each city from popular online paid healthcare platforms in China 
and considered them to be high-level and well-recognized. The results 
suggest that this kind of online data source can reflect the high-quality 
medical service capabilities of a city. Our results show that cities with 
more influential doctors per capita (Doc_renal_per) tend to become a 
popular destination for patients, while lower values result in slightly 

Fig. 5. Multiscale community structure of the IPMN a. The modules detected by modularity optimization (modularity Q = 0.753). b. The modules detected by 
Infomap (Q = 0.748). c. The original output of CPM optimization; cities in white were originally identified as individual clusters. d. The submodules given by 
modified c (Q = 0.736, resolution parameter γ = 6.626). Dark gray lines represent the boundaries of provincial-level administrative regions, and light gray lines 
represent the boundaries of cities. Cities with no mobility data are indicated in dark gray. 

Fig. 6. Distribution of weight, cost and scaled cost of mobility flows inside and outside the HSMs. a. Weight b. Cost c. Scaled cost.  

Table 1 
Proportion of weight, cost and scaled cost of mobility flows inside and outside 
the HSMs.  

Mobility flow type Weight % Cost % Scaled cost % 

Inside-module  80.0  47.5  45.2 
Outside-module  20.0  52.5  54.8  
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reduced traffic between two cities. 
Each subplot in Fig. 10 provides details of the impact of each feature 

on model prediction. We pay particular attention to the cutoff where the 
SHAP value is 0, as this point determines whether the feature's impact on 
the prediction is positive (predicted value should be higher than the 
baseline) or negative. Here, we provide the results for the three most 
influential features, which represent the impact of geographic distance 
(Distance, Region_flag) and medical resources (target.Doc_renal_per). We 
found that the effect of distance on model prediction shows an inter-
esting power-law-like trend. The negative effect on the model stabilizes 
with increasing distance, and 200 km is a cutoff that determines the 
direction of the effect. Fig. 10c illustrates the attractiveness of Doc_re-
nal_per. We observed that when a city has more than approximately 20 
high-level renal doctors per million people, it will become an attractive 
destination for nonlocal patients. 

5. Discussion and conclusion 

To the best of our knowledge, our study is one of the pioneering 
works that employed a real-world dataset to investigate the intercity 
mobility behavior of patients nationwide. This paper provides a meth-
odological reference for patient mobility studies using interdisciplinary 
approaches. The proposed framework can also be extended to other 
countries and regions to promote the equalization of healthcare re-
sources. The most important contributions of this study are the new 
understanding of the behavioral patterns of patients as a specific pop-
ulation and their implications for public health policies. 

In terms of the travel distance of patients, we found that the distri-
bution differs from previous studies on human mobility (Brockmann 
et al., 2006; Gonzalez et al., 2008; Han et al., 2011; Noulas et al., 2012). 
The truncated power law fits better than other functions, but the tail is 
steeper, which indicates that healthcare-seeking behavior is constrained 
by financial cost. From the perspective of complex networks, we find 

Fig. 7. Roles of cities in each parameter space. R1, R2, R3, and R4 represent nonhubs, exclusive hubs, inclusive hubs, and extensive hubs, respectively. a. Outside- 
module demand perspective b. Inside-module demand perspective c. Outside-module supply perspective d. Inside-module supply perspective. 
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that the in- and out-degrees of the IPMN follow a log-normal distribu-
tion, which is consistent with many real-world networks (Broido & 
Clauset, 2019). 

We examined the self-organized community structures of the IPMN 
using community detection methods. We summarize the results of 
community detection as “universal administrative constraints and a few 
boundary breaches”. It is influenced by a mixed effect of administrative 

regions, urban agglomerations, geographic locations and healthcare 
resources. The mismatch between the behavioral community and 
administrative boundary is also found in the division of HSAs in the 
United States (The Center for the Evaluative Clinical Sciences, Dart-
mouth Medical School, 1996 ). However, unlike HSAs and HRRs in the 
United States, few studies have focused on healthcare policy zoning 
units in China. When applying healthcare policies, zoning units play an 

Fig. 8. Performance of patient mobility models. a. Gravity model b. XGBoost c. SVM d. RF.  

Fig. 9. Top 15 variables with the greatest impact on model prediction. a. Summary plot of the importance of the features ranked by the mean absolute SHAP value b. 
The impact of the features, where each point represents a sample of data in the training set, colored according to its value. 
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important role in decision-making, such as the construction of regional 
medical centers or the designation of counterpart support hospitals, both 
of which require delineating areas of responsibility. Our results show 
that HSMs can better describe the clustering pattern of patient behavior 
than provincial boundaries. 

After constructing HSMs, we focused on what role each city plays. 
We identified cities' roles according to their hubness and participation 
indices inside and outside HSMs. Considering the imbalanced develop-
ment of China's cities, it is necessary to consider spatial heterogeneity 
when applying policies based on the different characteristics of each 
city. For instance, counterpart support can be established between 
supply and demand hub cities in the same HSM. Regional medical 
centers can be prioritized to be built in supply hub cities to reduce their 
pressure or to cover multiple demand hub cities to avoid unnecessary 
long-distance mobility. Healthcare resources in demand hub cities can 
be strengthened to reduce patients' burden of long-distance travel, 
especially for outside-module demand hubs. For cities with low partic-
ipation indices, more attention should be given to improving the set-
tlement mechanism of medical treatment in popular destinations. 

The modeling results indicate that distance and healthcare resources 
are the most important factors driving patient flows. Distance has a 
power-law-like effect on patient travel behavior, and as an indicator 
correlated with Distance, Region_flag serves as the second most important 
factor, which validates the rationality of the data-driven HSMs as a basic 
zoning unit. We used a novel data source to measure each city's capa-
bility of high-quality healthcare services. Additionally, the performance 
of the mobility model validates that such data indeed have good 
explanatory power for real-world patient behaviors. As revealed by the 
results, high-quality healthcare resource development plays a key role in 
solving the issue of intercity patient mobility. 

Due to limited data availability, only data from patients with CKD 
were used. However, according to our calculations, the rate of nonlocal 
visits for CKD patients (22 %) is much higher than the average (8 %). 
Moreover, the allocation of medical resources needs to be tailored to 
different kinds of diseases, and our framework can be fully applicable to 
other diseases as well. In the future, improvements can be made on the 
present work, starting with integrating larger-scale datasets for diverse 
or universal patient mobility patterns of multiple diseases. Additionally, 
this study was based on cities as nodes of the complex network, leading 
to the loss of some location information in the aggregation process. 
Analysis at a finer-resolution spatial unit similar to the HRRs in the US 
could be conducted to promote cooperation among cities (Jia et al., 
2020b). 

Urbanization has facilitated the agglomeration of resources, 
including high-quality healthcare service resources. This inequality has 
led to the cross-city mobility of patients. With the continuing develop-
ment of urbanization, the flows of population, resources and informa-
tion between cities will be further accelerated (Hu et al., 2020; Pan & 
Lai, 2019; Ye & Liu, 2019; Zhang et al., 2020a; Zhao et al., 2014). As we 
can observe from the structure of the patient mobility network, it has 
different characteristics from other kinds of networks between cities. For 

example, in the IPMN, the edges with the highest weight are mostly 
confined to the provincial administrative region, while for the national 
population flow network, the cross-provincial high-volume population 
flows are much more common (Pan & Lai, 2019; Zhang et al., 2020a). 
The differences between the IPMN and the population flow network are 
also shown in the distribution of in-degrees. The cities with the highest 
in-degrees in the IPMN absorb far more patient inflows than other cities, 
reflecting a more severe polarization of healthcare resources. Han (Han 
et al., 2011) proved that the mechanism of scaling law in human 
mobility is related to the hierarchical nature of traffic systems. However, 
as we found in this paper, the displacement distribution of patients does 
not follow this law, suggesting a different structure of the IPMN. Patient 
mobility reflects the uneven development of different resources amidst 
China's urbanization. As shown in our study, patients are now able to 
seek healthcare in more distant cities thanks to the convenience of 
intercity traffic systems. However, cross-module visits which accounted 
for only 20 % of total visits, accounted for >50 % of the total travel 
distance, which also demonstrates the potential of relevant policies such 
as regional medical centers to avoid unnecessary long-distance travel. 
Both the government and academics should strive to further understand 
and optimize the patient mobility network. Efforts should be made to 
reduce nonlocal visits and unnecessary long-distance travel for patients 
to promote the equality and accessibility of public health resources. 

In conclusion, the wide use of information technology has made it 
possible to study patient mobility at a large spatial scale. As a subset of 
human mobility, patient mobility has strong practical relevance. In 
particular, for developing countries with relatively poor equity in 
healthcare resources, patient mobility reflects the mismatch between 
resources and population, and optimizing patient mobility should be a 
goal for policymakers. Several emerging data sources, such as electronic 
hospital records, mobile phone and taxi data, provide us with the 
unprecedent opportunity to perform a detailed analysis of patient 
mobility at multiple spatial scales, ultimately serving to build a more 
people-centered and cost-effective healthcare system. 
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Understanding road usage patterns in urban areas. Scientific Reports, 2, Article 1001. 

Weiss, D. J., et al. (2018). A global map of travel time to cities to assess inequalities in 
accessibility in 2015. Nature, 553, 333–336. 

Xing, J. D., & Ng, S. T. (2022). Analyzing spatiotemporal accessibility patterns to tertiary 
healthcare services by integrating total travel cost into an improved E3SFCA method 
in Changsha, China. Cities, 122, Article 103541. 

Xiong, X., & Luo, L. (2020). Inpatient flow distribution patterns at Shanghai hospitals. 
International Journal of Environmental Research and Public Health, 17(7), Article 2183. 

Xu, M., Pan, Q., Muscoloni, A., Xia, H., & Cannistraci, C. V. (2020). Modular gateway- 
ness connectivity and structural core organization in maritime network science. 
Nature Communication, 11, 2849. 

Xu, Z., et al. (2020). Centralizing rectal cancer surgery: What is the impact of travel on 
patients? Diseases of the Colon and Rectum, 63, 319–325. 

Yan, X., Shan, L., He, S., & Zhang, J. (2022). Cross-city patient mobility and healthcare 
equity and efficiency: Evidence from Hefei, China. Travel Behaviour and Society, 28, 
1–12. 

Yang, C., et al. (2020). CKD in China: Evolving spectrum and public health implications. 
American Journal of Kidney Diseases, 76, 258–264. 

Yang, C., et al. (2022). Healthcare resource utilisation for chronic kidney disease and 
other major non-communicable chronic diseases in China: A cross-sectional study. 
BMJ Open, 12, Article e051888. 

Yang, Y., Zhang, X., & Lee, P. K. C. (2019). Improving the effectiveness of online 
healthcare platforms: An empirical study with multi-period patient-doctor 
consultation data. International Journal of Production Economics, 207, 70–80. 

Ye, X., & Liu, X. (2019). Cities as spatial and social networks. Springer.  
Zhang, L., et al. (2020). China kidney disease network (CK-NET) 2016 annual data 

report. Kidney International. Supplement, 2011(10), e97–e185. 
Zhang, W. L., Chong, Z. H., Li, X. J., & Nie, G. B. (2020). Spatial patterns and determinant 

factors of population flow networks in China: Analysis on tencent location big data. 
Cities, 99, Article 102640. 

Zhao, M., Liu, X., Derudder, B., Zhong, Y., & Shen, W. (2014). Mapping producer services 
networks in mainland Chinese cities. Urban Studies, 52, 3018–3034. 

Zipf, G. K. (1946). The P1P2/D hypothesis: On the intercity movement of persons. 
American Sociological Review, 11, 677. 

J. Ding et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030153032
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030153032
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030153032
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027496769
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027496769
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027244019
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027244019
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027244019
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050025014219
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050025014219
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050025014219
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031181732
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031181732
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031316582
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031316582
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024351319
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024351319
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024351319
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031121012
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031121012
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031121012
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029439762
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029439762
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029439762
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031298612
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031298612
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024595039
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024595039
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030370742
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030370742
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030370742
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029453692
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029453692
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029453692
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029453692
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf4545
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf4545
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030204962
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030204962
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050028270261
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050028270261
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031245862
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031245862
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030470442
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030470442
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030470442
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030400092
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030400092
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030178482
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030178482
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030178482
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030185462
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030185462
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030185462
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050022054280
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050022054280
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030169442
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030169442
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030169442
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050026583839
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050026583839
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031272922
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031272922
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031230572
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031230572
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027058149
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027058149
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050027058149
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030296252
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030296252
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050025042049
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050025042049
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050025042049
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029498912
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050029498912
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024318059
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024318059
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024318059
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030282222
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030282222
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030316962
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030316962
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030316962
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030333032
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030333032
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050030333032
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050026335259
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024430809
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024430809
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024373399
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024373399
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050024373399
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050026076089
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050026076089
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031129912
http://refhub.elsevier.com/S0264-2751(22)00414-0/rf202209050031129912

	Influential factors of intercity patient mobility and its network structure in China
	1 Introduction
	2 Data
	2.1 Mobility data
	2.2 Urban socioeconomic data

	3 Methods
	3.1 Community detection of mobility network
	3.1.1 Infomap algorithm
	3.1.2 Modularity optimization
	3.1.3 Constant Potts model optimization

	3.2 Identification of the functional roles of cities in mobility network
	3.2.1 Hubness index
	3.2.2 Participation index
	3.2.3 Role identification framework

	3.3 Patient mobility modeling and interpretation
	3.3.1 Gravity model
	3.3.2 Machine learning models


	4 Results
	4.1 Distribution of travel distance
	4.2 Basic topological properties of the IPMN
	4.3 Multiscale community structure of the IPMN
	4.4 Mobility flow across HSMs
	4.5 Cities' roles in the IPMN
	4.6 Mobility models and influential factors

	5 Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


