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Abstract: Precipitation is a crucial source of data in hydrological applications for water resources
management. However, several regions suffer from limited data from a ground measurement network.
Remotely sensed data may provide a viable alternative for these regions. This study aimed to evaluate
six satellite products (GPM-F, CHIRPS, PERSIANN-CCS-CDR, GPM-L, GPM-E and PDIR-Now), with
high spatio-temporal resolution, in the sub-Saharan regions of Morocco. Precipitation observation
data from 33 rain-gauge stations were collected and used over the period from September 2000 to
August 2020. The assessment was performed on three temporal scales (daily, monthly and annually)
and two spatial scales (pixel and basin scales), using different quantitative and qualitative statistical
indices. The results showed that the GPM-F product performed the best, according to the different
evaluation metrics, up to events with 40 mm/day, while the GPM near real-time products (GPM-E
and GPM-L) were better at detecting more intense rainfall events. At the daily time scale, GPM-E and
GPM-L and, on monthly and annual scales, CHIRPS and PERSIANN-CCS-CDR, provided satisfactory
precipitation estimates. Moreover, the altitude-based analysis revealed a bias increasing from low to
high altitudes. The continental and mountainous basins showed the lowest performance compared to
the other locations closer to the Atlantic Ocean. The evaluation based on the latitudes of rain gauges
showed a decrease of bias towards the most arid zones. These results provide valuable information in
a scarcely gauged and arid region, showing that GPM-F could be a valuable alternative to rain gauges.

Keywords: sub-Saharan Morocco; scarce data region; satellite precipitation products (SPPs); pixel
and basin scales

1. Introduction

Recently, satellite data, and, more specifically, precipitation estimation data, have
become more and more relevant for hydro-climatic studies. The high spatio-temporal
resolution and the near global availability of these data sources are the main reasons
for this recourse [1,2]. Conventional precipitation measurement methods, such as rain
gauge and ground-based weather radar, remain very limited, especially for developing
countries, areas with complex topography and oceans [3–5], in addition to data quality
issues and maintenance costs [6]. For all climatological purposes, the World Meteorological
Organization recommends one rain gauge per 900 km2 in lowland areas and per 250 km2

in areas with complex topography [7]. Developing countries with widely dispersed rain
gauges are still far from reaching these criteria [8–10].

Since the launch of the Tropical Rainfall Measuring Mission (TRMM) [11], in 1997,
by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace

Water 2022, 14, 3336. https://doi.org/10.3390/w14203336 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14203336
https://doi.org/10.3390/w14203336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-7280-3951
https://orcid.org/0000-0001-9337-4367
https://orcid.org/0000-0001-8949-2547
https://orcid.org/0000-0003-0481-5330
https://doi.org/10.3390/w14203336
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14203336?type=check_update&version=1


Water 2022, 14, 3336 2 of 21

Exploration Agency (JAXA), satellite-based precipitation measurements have been rapidly
developed. Several precipitation estimation products were launched afterwards and
became freely available. e.g., Global Satellite Mapping of Precipitation (GSMaP) [12],
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN) [13], Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) [14], and The Integrated Multi-satellitE Retrievals for Global Precipitation Mea-
surement (IMERG) [15]. However, satellite precipitation products (SPPs) are affected by
uncertainties and biases, due to errors in retrieval algorithms, measurements, and biased
correction processes. In addition, the accuracy of precipitation estimation algorithms is
affected by the topography and climatic conditions of the monitored area [16–18]. Their
performance varies from region to another, and under different climatic conditions [19]. To
understand their advantages and limitations, these new data sources have been extensively
studied and compared with observed data at the global scale as follows: in Africa [20–22],
in America [23,24], in Europe [2,6,25,26], and in Asia [27–30].

In Morocco, different studies have carried out the evaluation of SPPs in different
regions and applications. For drought monitoring, Hadria et al. [31] tested the TRMM
product over the whole country at an annual scale. They found that this product showed a
very strong correlation with the observed data. This correlation improved for long-term
annual average precipitation. For hydrological modeling, Tramblay et al. [21] evaluated
five SPPs in the Makhazine catchment, located in the north of Morocco. They found that
the TRMM-3B42 v7 product was the closest to the observed data and reproduced the
monthly flow dynamics at the basin scale well, despite poor performance at the daily scale.
For the same application, Karmouda et al. [32] evaluated three high spatial resolution
products (PESIANN- Cloud Classifcation System (CCS), CHIRPS and TRMM 3B42) in
the Ouergha basin (Northern Morocco). They found that CHIRPS and TRMM showed
a strong improvement on a monthly scale, and the CHIRPS product outperformed the
other products in reproducing the observed flow. El Alaoui El Fels et al. [33] also tested
the CHIRPS product for Rainfall Frequency Analysis in the Tensift basin. The results
showed good agreement between observed and estimated data at the monthly scale,
which improved even more with the use of a bias correction model. For flood simulation,
Saouabe et al. [34] and Ouaba et al. [35] evaluated and used the IMERG product in the
Tensift sub-basins, and concluded that these products could be an alternative for flow
estimation in ungauged basins. For rainfall applications, Milewski et al. [36] evaluated the
TRMM product over several catchments in Northern Morocco, and the results showed that
the research product outperformed the near real- time product and both overestimated
precipitation in an arid environment and underestimated it at high altitudes. Recently,
Salih et al. [37] evaluated seven satellite products in the Tensift basin and found that the
PERSIANN-CDR product was the most efficient and could, therefore, be used to study
climate change in this region.

The sub-Saharan region in South Morocco remains less studied in terms of assessing
satellite-based rainfall efficiency, especially for different time steps. Furthermore, most of
the studies previously mentioned have assessed the SPPs at the monthly time step. To
fill this gap, our study focused on this southern region, which is characterized by an arid
climate. It is exposed to an increased aridity in summer and a greater spatial-temporal
variability of rainfall than Northern Morocco. However, this context of aridity does not
preclude the risks of flooding in this region. Flash floods can occur and are generally
of short duration [38], causing significant material and human damage. For example,
the Aouerga Wadi in the Souss basin has experienced three devastating floods in the last
decade (2010, 2014 and 2018) that caused a lot of damage [39]. More recently, in 2019, the
village of Tizert experienced a heavy flash flood that resulted in the deaths of at least seven
people on a soccer field [40]. These extreme events could be accentuated by the impact of
climate change [41], and this, as well as the fact that the region has significant economic
dependence on its natural resources [42], require fundamental knowledge and monitoring
of precipitation at a finer resolution.
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The objective of our study was to evaluate six high resolution satellite products in
sub-Saharan regions of Morocco that are characterized by a sparse gauge network and
are exposed to extreme events. The evaluation of these different satellite data not only
allows determination of the most suitable products for this study area, but also for specific
applications (water resources management or monitoring and prediction of extreme events)
in the region. These new data sources have never been tested in sub-Saharan Morocco,
with the exception of the CHIRPS product that has been tested on a monthly scale for
climate change assessment in the Chtouka Aït Baha region [43]. Our evaluation concerns a
longer time period, from 2000 to 2020, in contrast to the majority of the aforementioned
studies, that only addressed a shorter period of evaluation (usually less than 10 years).
This limitation could be affected by the different satellite sensors, as well as the different
retrieval algorithms used [44]. This time-series extension aimed to increase the reliability of
the results, as well as determine the performance and adaptability of these products so as
to exploit and use them in these sub-Saharan areas.

2. Study Area and Data Sets

The study area concerns the Souss Massa and the Upper Draa basins. It is located in
the south of Morocco, between latitudes 32◦ N and 29.3◦ N and longitudes 9.88◦ W and
5.5◦ W. It is limited by the High Atlas Mountains in the North, the Sahara in the South,
Algeria in the East, and the Atlantic Ocean in the West (Figure 1).
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Figure 1. Location of the study area and rain gauges network. B1-B5: Basins.

The Souss Massa basin is drained by the Oued Souss and, in the south, by the Oued
Massa. The basin is characterized by a semi-arid to arid climate. High altitudes and coastal
areas receive more rainfall than low altitude and continental areas. Annual rainfall varies
from 100 mm in the plains to 600 mm in the High Atlas Mountains. Temperatures are mild
and regular, with an annual average of 20 ◦C. The climate is influenced by the Canary
cold stream and the mountainous barrier of the Anti-Atlas, which constitutes a protection
against the southern winds [41,45,46].
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The Upper Draa basin constitutes the upstream part of the largest basin in Morocco
(Draa basin), with the tributaries of Dades, Ouarzazate and Aït Douchen. These tributaries
drain the southern slopes of the central High Atlas and the northern slopes of the Anti-
Atlas. This part represents the mountainous area of the Draa basin. The high mountains
are characterized by a subhumid climate, while the low altitudes have an arid climate with
low precipitation, about 116 mm/year [47]. The presence of, and SW-NE orientation of, the
Siroua Massif (the link between the High Atlas and the Anti-Atlas) poses an obstacle to
oceanic influences, which means the Saharan influences are felt much further east [48].

In general, the climate of the study area is influenced by: latitude (increasing aridity
from north to south), altitude (colder climatic conditions in mountainous areas), and
longitude (increasing continentality from west to east, due to the distance from the Atlantic
Ocean) [45,49]. On this basis, the study region is divided into five basins (Figure 1): B1,
semi-arid and oceanic; B2, sub-oceanic and sub-arid; B3, semi-continental and sub-arid; B4,
sub-arid and continental; B5, sub-oceanic and arid.

2.1. Ground Observations

A total of 33 rain gauge stations were used to evaluate the satellite products in this
study. Of these, 20 stations were from the Souss Massa Hydraulic Basin Agency (ABHSM)
and the remaining stations (13) were from the Draa Oued Noun Hydraulic Basin Agency
(ABHDON). These two agencies provide data on a daily time scale. Table 1 shows the
coordinates, as well as the percentage of missing values, in each station calculated at a daily
time step. A rate of 20% missing data was considered a threshold not to be exceeded for
the total records [50]. These missing values were not considered in the evaluation. To not
disturb the evaluation and to guarantee its reliability, the missing days in each station were
also excluded from the satellite data. The availability of observed data only at the daily
scale forced us to start the evaluation at this scale, despite the availability of most satellite
products in a sub-daily time scale.

Table 1. Coordinates of the stations used in this study and their missing values rate. ID: Identification
of rain gauge, where S for Souss and D for Draa, Lat is Latitude, Long is longitude, and Z is altitude.

ABHSM ABHDON

Stations ID Long Lat Z (m) Missing
Values (%) Stations ID Long Lat Z (m) Missing

Values (%)

ABHSM S1 −9.59◦ W 30.42◦ N 28 5.04 IFNI D1 −10.16◦ W 29.37◦ N 20 10.8

Imi Miki S2 −9.65◦ W 30.52◦ N 40 0.63 Mansour
Eddahbi D2 −6.78◦ W 30.91◦ N 1100 5.35

Tamri S3 −9.81◦ W 30.71◦ N 42 0.12 Ouarzazate
Centre D3 −6.90◦ W 30.93◦ N 1130 0.99

Youssef Ben
Tachafine S4 −9.49◦ W 29.85◦ N 107 2.41 Tinouar D4 −6.61◦ W 31.01◦ N 1136 2.42

Ouijjane S5 −9.51◦ W 29.61◦ N 180 2.14 Tiflite D5 −6.80◦ W 31.01◦ N 1168 0.52

N’guerf S6 −9.28◦ W 29.87◦ N 190 1.56 Aman-
Ntini D6 −7.04◦ W 30.95◦ N 1170 1.05

Pont
Taroudant S7 −8.90◦ W 30.43◦ N 209 1.53 Agouillal D7 −7.10◦ W 31.01◦ N 1220 1.72

Dkhila S8 −9.28◦ W 30.57◦ N 312 2.01 Taherbilte D8 −6.95◦ W 30.83◦ N 1226 0.93

Imi El Kheng S9 −8.53◦ W 30.67◦ N 539 1.04 Ifre D9 −6.18◦ W 31.34◦ N 1498 16.87

Amaghouz S10 −9.19◦ W 29.73◦ N 610 0.11 Imdghar
N’izdar D10 −7.34◦ W 30.61◦ N 1502 0.94

Tassila S11 −9.44◦ W 30.95◦ N 620 2.98 Ait
Mouted D11 −6.00◦ W 31.43◦ N 1545 2.64
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Table 1. Cont.

ABHSM ABHDON

Stations ID Long Lat Z (m) Missing
Values (%) Stations ID Long Lat Z (m) Missing

Values (%)

Abdelmoumen S12 −9.20◦ W 30.68◦ N 628 0.96 Agouim D12 −7.46◦ W 31.16◦ N 1647 6.53

Lamded S13 −8.31◦ W 30.76◦ N 670 8.01 M’semrir D13 −5.81◦ W 31.71◦ N 1942 11.29

Pont Aoulouz S14 −8.16◦ W 30.70◦ N 680 7.19

Aguenza S15 −9.16◦ W 30.74◦ N 720 1.34

Aoulouz S16 −8.14◦ W 30.70◦ N 784 7.64

Amsoul S17 −9.07◦ W 30.84◦ N 860 2.67

Immerguen S18 −8.02◦ W 30.60◦ N 925 5.72

Taliouine S19 −7.91◦ W 30.53◦ N 1000 9.12

Iguidi S20 −7.90◦ W 30.84◦ N 1200 5.56

2.2. Satellite Rainfall Products

In this study, we evaluated six satellite products, of which three belong to the GPM
(Global Precipitation Measurement) mission, two others are developed by the Center for
Hydrometeorology and Remote Sensing (CHRS), and one is developed by USGS (United
States Geological Survey) and CHC (Climate Hazards Center). The choice of these products
was based on their availability (Open access), their high spatial-temporal resolutions and
their large spatial coverages. Table 2 summarizes the characteristics of these data sources.
Among these products, 3 are based on satellite data only (GPM-E, GPM-L and PDIR) and
three combine satellite and gauge data (CHIRPS, GPM-F, PERSIANN-CCS-CDR).

Table 2. Summary of satellite precipitation products used in this study.

Product Denoted as Spatial
Resolution

Finest Temporal
Resolution Spatial Coverage Latency Period

GPM IMERG-Early V06 GPM-E 0.1◦ × 0.1◦ 30 min 60◦ N–60◦ S 4 h June 2000–Now

GPM IMERG-Late V06 GPM-L 0.1◦ × 0.1◦ 30 min 60◦ N–60◦ S 14 h June 2000–Now

GPM IMERG-Final V06 GPM-F 0.1◦ × 0.1◦ 30 min 60◦ N–60◦ S 3.5 months June 2000–Now

PDIR-Now PDIR 0.04◦ × 0.04◦ 1 h 60◦ N–60◦ S 15–60 min March 2000–Now

PERSIANN-CCS-CDR CCS-CDR 0.04◦ × 0.04◦ 3 h 60◦ N–60◦ S 3–3.5 months January 1983–Now

CHIRPS v2.0 CHIRPS 0.05 ◦ × 0.05 ◦ 1 day 50◦ N–50◦ S 3 weeks January 1981–Now

• GPM products

The GPM mission is the successor of the Tropical Rainfall Measurement Mission
(TRMM). It was launched in 2014 by NASA and JAXA with many improvements, especially
in terms of resolution and spatial coverage. The GPM mission measures precipitation using
a constellation of satellites from different providers and a main calibration satellite (GPM-
Core) to produce near real-time precipitation estimates [15]. Version 06 is the most recent
version, merging early precipitation estimates collected by the TRMM satellite mission
(2000–2014) with more recent precipitation estimates collected during the GPM satellite
operation (2014–present) [15,51].

This product provides data in three runs: early (4 h after observation time), late (14 h
after observation time) and final (3.5 months after observation time). The main difference
between the early and the late run is that IMERG Early only has forward propagation
(extrapolation forward in time), and is not corrected by observed data. The final step uses
monthly rainfall station data from the Global Precipitation Climatology Centre (GPCC) to
calibrate the data and create research-level products [15].

The three products of the GPM- IMERG V06 mission were downloaded from the
following NASA site: «https://gpm.nasa.gov/data-access/downloads/gpm» (accessed
on 16 June 2022).

https://gpm.nasa.gov/data-access/downloads/gpm
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• CHRS products

The CHRS at the University of California, Irvine (UCI) [13] produces five prod-
ucts of the PERSIANN family using an Artificial Neural Network (ANN) model: PER-
SIANN [52], PERSIANN-CCS [53], PERSIANN-CDR [54], PERSIANN-CCS-CDR [55] and
PDIR-Now [56]. PERSIANN-CCS-CDR and PDIR-Now are the two products evaluated
in this study. The PERSIANN-CCS-CDR product combines the two algorithms used in
the PERSIANN-CCS and PERSIANN-CDR products in order to produce a product with
both very fine spatial resolution and large temporal coverage. Most products that provide
fine resolution estimates only cover a short period of record. This product uses Gridded
satellite infrared data (GridSat-B1) and NOAA (National Oceanic and Atmospheric Admin-
istration) Climate Prediction Center (CPC-4 km) IR product as input data and is adjusted
by the Global Precipitation Climatology Project (GPCP V2. 3) [55]. The PDIR product
is a near real-time product with a short latency of 15–60 min, which is very suitable for
near real-time hydrological applications, like flood prediction. It is intended to replace the
PERSIANN-CCS product [56]. The main data used in the estimation of this product is the
IR data provided by the Climate Prediction Center (CPC) at the National Weather Service.
It merges 11-µm brightness temperature (Tb) data from all available geostationary satellites
into a single half-hourly Tb IR field at 4 km spatial resolution [56].

These two products were downloaded from the Portal platform [57] «https://chrsdata.
eng.uci.edu» (accessed on 16 June 2022).

• CHIRPS v2.0 product

The CHIRPS satellite precipitation product is developed by the US Geological Survey
and the Climate Hazards Group at the University of California, Santa Barbara [14]. The
main data sources used to estimate the CHIRPS product are as follows: Monthly precip-
itation climatology CHPClim; quasi-global geostationary thermal infrared (IR) satellite
observations from the (CPC) IR, and the National Climatic Data Center (NCDC) B1 IR;
the Tropical Rainfall Measuring Mission (TRMM) 3B42 product from NASA; atmospheric
model rainfall fields from the NOAA Climate Forecast System; version 2 of the reanalysis
product (CFSv2); in situ precipitation observations obtained from a variety of sources,
including national and regional meteorological services [58].

The data was downloaded from the site: «https://www.chc.ucsb.edu/data/chirps»
(accessed on 16 June 2022).

All the SPPs were downloaded on a daily step, from 1 September 2000 to 31 August
2020, and were converted into monthly and annual time steps. The choice of the study
period was based on both the availability of observed data and the availability of the
satellite products.

3. Methods

Two spatial scales were adopted to evaluate the performance of these products:

• Pixel scale

Given the limited number of rain-gauge stations, as well as their dispersion in the
study area, the “point-to-pixel” approach [22,59–61] was adopted in this study to evaluate
satellite products, instead of the “pixel-to-pixel” approach (e.g., [62]), which consists of
interpolating the station measurements into gridded data of the same spatial resolution as
the evaluated product. Interpolation could produce unrealistic estimations for regions with
a widely sparse and uneven number of rain gauges [19,63–65]. The study in [66] evaluated
the three IMERG products using the two aforementioned approaches and found that both
methods (the point-to-pixel or pixel-to-pixel) yielded very similar results. In addition, the
high spatial resolution of the products used in this study would not influence the relevance
of the evaluation.

• Basin scale

https://chrsdata.eng.uci.edu
https://chrsdata.eng.uci.edu
https://www.chc.ucsb.edu/data/chirps
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In order to minimize the error due to interpolation, basin-averaged analysis [29,30]
was used to examine the accuracy of each product over the five selected basins. It should
be noted that precipitation data measured on the ground are very scattered in our study
area, so the creation of a spatialized reference dataset, via spatial interpolation methods.
for instance, could be very complicated and could introduce additional bias.

For both spatial scales, the evaluation was done over the period from September 2000
to August 2020, on three temporal scales (daily, monthly, annually), using quantitative
(continuous) and qualitative (categorical) statistical indices (Table 3):

Table 3. List of Continuous and Categorical metrics used in this study. Gi: the gauge observation; Si:
the satellite precipitation estimation; S: the mean satellite precipitation estimation; G: the mean gauge
observation; N: the sample size; A–C: see the contingency table (Table 4).

Statistical Index Formula Range Optimum Value

Continuous metrics

Correlation coefficient CC =
∑N

i=1(Gi−G)(Si−S)√
∑N

i=1(Gi−G)
2×

√
∑N

i=1(Si−S)
2

−1 to 1 1

Relative bias RBiais = ∑N
i=1(Si−Gi)
∑N

i=1 Gi
× 100 0 to + ∞ 0

Relative root mean
square error RRMSE =

√
1
N ∑N

i=1(Si−Gi)2

1
N ∑N

i=1 Gi
0 to + ∞ 0

Relative mean
absolute error RMAE = ∑N

i=1|Si−Gi|
∑N

i=1 Gi
0 à + ∞ 0

Categorical metrics

Probability of
Detection POD = A

A+C 0 to 1 1

False alarm ratio FAR = B
A+B 0 to 1 0

Critical success index CSI = A
A+B+C 0 to 1 1

Table 4. Contingency table for categorical metrics. A: corresponds to an event detected by the satellite
product and the rain gauge; B corresponds to an event detected only by the satellite product; C
corresponds to an event detected by the rain gauge but not by the satellite product; D corresponds to
an event not detected by the rain gauge nor by the satellite product.

Observation

Yes No

Satellite Product
Yes A: Hits B: False

No C: Misses D: Rejection

3.1. Continuous Metrics

Four statistical indices widely used to evaluate satellite products [67–69] were used
to quantitatively evaluate these products (Table 3): (1) CC (correlation coefficient), which
measures the degree of linear association between estimated and observed precipitation;
(2) RBias (relative bias), which describes the systematic bias between the precipitation
estimated by each product and the observed precipitation. Negative bias values indicate
an underestimation of precipitation, while positive values indicate an overestimation;
(3) RMSE (root-mean-square error) and (4) MAE (mean absolute error) [70]. These last
two indices are similar or, rather, have the same objectives. They measure the average
magnitude of the error between estimated and observed precipitation. RMSE is very
sensitive to outliers, while MAE is less sensitive to extreme values [71]. The study of [72]
shows that RMSE is inappropriate for assessing model performance and favors the use of
MAEs, while [2] found that RMSE and relative bias are the most appropriate to select the
best performing product in hydrological modeling, and [73] suggest that RMSE is more
relevant to represent model performance than MAE when the error distribution is expected
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to be Gaussian, but conclude that a combination of metrics is often necessary to assess
model performance. To that end, we used both metrics in this evaluation. All indices were
normalized by the mean of the observed data, and used as relative metrics. This was in
order to compare the station results, and to eliminate the effect of the unit and its sensibility
to change [71,74].

3.2. Categorical Metrics

The detection ability of the products was also evaluated using three categorical indices:
the Probability of Detection (POD), the False Alarm Ratio (FAR) and the Critical Success
Index (CSI) (Table 3). The indices were calculated, based on a contingency table (Table 4),
between the satellite-based rainfall and the observed data. The POD measures the fraction
of observed events that are correctly detected by the product. The FAR measures the ratio
of events detected by the product but not really produced, and CSI is an overall reflection
of a product’s ability to detect real precipitation events [70]. These three indices were
measured on a daily time scale. A threshold of 1 mm/d, suggested by many previous
studies [3,75,76], was used as a rain/no rain threshold, and to determine the capacity of
these products over different intensity intervals. Five precipitation intensity classes, from
the World Meteorological Organization [77], were modified and adapted to our study
climate (Table 5).

Table 5. Classification of rainfall events according to their daily intensity. [a, b]: the interval includes
the values strictly between a and b. [a, b]: The interval includes values greater than, or equal to a and
strictly less than b.

Rainfall Event Intensity in mm/d

Light rain [0, 1]

Moderate rain [1, 5]

Medium rain [5, 20]

Heavy rain [20, 40]

Extreme rain ≥40

4. Results
4.1. Evaluation at the Pixel Scale
4.1.1. Performance of Continuous Metrics

For all stations, the uncorrected products (GPM-E, GPM-L, PDIR) overestimated
precipitation with similar median bias (35.7%, 36.3%, 41.6%). The GPM-E product had the
largest interval variation, followed by the GPM-L product and then the PDIR product. The
corrected products showed a smaller bias. The CCS-CDR showed the lowest bias (slight
underestimation with a median of −4.2%). The GPM-F and the CHIRPS overestimated
precipitation with a median bias of 20% and 6.3%, respectively (Figure 2).

Figure 3 shows the correlation coefficient (CC), RMAE and RRMSE for the different
satellite estimates against the ground observations. The median correlations ranged from
0.27 to 0.79 for all three scales: daily, monthly, and annually. The daily scale had the lowest
values with a median between 0.27 and 0.55, depending on the satellite product, which
improved more at the monthly scale (0.48–0.79) than at the annual scale (0.39–0.66). The
medians of relative mean absolute error (RMAE) varied between 1.2 and 1.5 at the daily
scale. This interval decreased at the monthly scale (0.58–1). It decreased even more at
the annual scale (0.38–0.55). The RRMSE also showed a remarkable improvement when
moving from daily to annual scale. The GPM-F product performed well at all the scales.
It had the highest CC and the lowest RMAE and RRMSE values, followed by the GPM-E
and GPM-L products, which outperformed the other products at the daily scale, despite
being uncorrected products. At the monthly and annual scales, the corrected products took
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second ranking, notably the CHIRPS and the CCS-CDR products. The PDIR product was
last in terms of performance at all the scales.
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• Evolution of continuous metrics according to altitudes

In this section, we analyzed the variation of the continuous metrics according to the
altitudes. Figure 4 shows the relative bias of each product, according to the altitudes from
the lowest (20 m) altitude to the highest (1942 m). We observed that, for low altitudes, most
of the products moderately overestimated the observed precipitation. For the piedmont part
(539–1000 m), there was generally an underestimation, except for two stations (Aguenza
(720 m) and Amssoul (860 m), which showed a moderate overestimation for all products.
For high altitudes (above 1000 m), there was a very strong overestimation of precipitation,
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reaching 200% for both GPM-E and GPM-L products. However, generally, and for all
altitudes, the GPM-F, CHIRPS and CCS-CDR products were the closest to the observed
data. The two other GPM products (GPM-E and GPM-L), and the PDIR products, were the
most biased, especially for high altitudes.
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We found that the correlation did not show a very precise trend at the daily scale
(Figure 5). On the other hand, the RMAE and the RRMSE showed an increasing trend
towards the high altitudes, except for one station, Iguidi station (1200 m), which gave
a lower RMAE and RRMSE, in spite of its high altitude. At the monthly and annual
scales, the CC decreased towards higher altitudes, while the RMAE and RRMSE increased
(especially for altitudes above 1000 m), except for the aforementioned station. The GPM
products showed the highest correlation at the daily scale and had the lowest relative errors
(RMAE and RRMSE). The PDIR product was the least performing at all the scales and for
all the metrics.

• Evolution of continuous metrics according to latitudes

The variation of relative bias according to the latitudes, i.e., from the north to the south
of the study area, showed that, generally, the relative bias decreased from north to south
for all the products (Figure 6). The exception was the Imdghar N’Izdar station (30.61◦),
which was influenced by its high altitude (1502 m) and, therefore, showed a remarkable
overestimation of precipitation.
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Figure 7 shows the continuous statistical indices as a function of latitude. The correla-
tion increased from north to south at monthly and annual scales, while at the daily scale,
the trend was not easily visible. The RMAE and RRMSE showed the same variation with a
much greater amplification of the RRMSE index, due to influence by outliers. For stations
located in the extreme south (above 30.62), the RMAE and RRMSE were lower, especially
at the monthly and annual scales. However, for the other stations (below 30.61), we noticed
a very large variation of these two metrics. These were also influenced by the orographic
effect. In Figure 7, we notice two peaks for each plot of RMAE and RRMSE. These peaks
correspond to the stations Tahrbilte and Imdghar N’Izdar, whose altitudes are 1226 m and
1502 m, respectively. The altitude might be the reason for the large errors recorded in these
two stations.
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4.1.2. Ability of the Satellite Products to Detect Different Precipitation Intensities

The categorical metrics for the five intensity classes were studied for the six satellite
products. The results showed that all products gave a low probability of detection, which
did not exceed 0.4 in median for almost all products and the adopted intensities (Figure 8).
The three GPM products had a higher POD compared to the other products. The GPM-F
product performed better for intensities below 40 mm/d. The two GPM-L and GPM-E
products outperformed, respectively, the GPM-F product for daily amounts above or equal
to 40 mm/d. The CCS-CDR and CHIRPS products showed closer results, with the CCS-
CDR product performing better for intensities below 5 mm/day and the CHIRPS product
performing much better for intensities above 5 mm/day. The PDIR product was the least
performing for the majority of intensity classes, except for the class between 1 and 5 mm/d,
where it outperformed all the other products with a median of 0.47. This product did not
detect intensities between 0 and 1 mm/d, or intensities greater than or equal to 40 mm/d,
where the median over all events was almost equal to 0. This was clearly demonstrated by
the CSI results, which also incorporated the false alarms detected by the satellite product.
The GPM-F product was the best performer and the PDIR product was the worst in terms
of performance. The false alarm ratio (FAR) showed that all products had a high false
alarm rate, especially for low intensities (<5 mm/d). The GPM-F product always showed
the best results, followed by the other two near real-time GPM products. The CCS-CDR
and CHIRPS products showed similar results for low intensities, which improved much
more when moving to high intensities for the CHIRPS product.

4.2. Evaluation at the Basins Scale

The evaluation was also carried out at the scale of five basins, selected according to
their aridity and distance from the ocean. Figure 9 shows the relative bias between satellite
and observed data over the entire study period. The two products, GPM-E and GPM-L,
overestimated precipitation for all basins. The other products performed differently from
one basin to another. Basin 4 recorded the largest bias regardless of the product. The
CHIRPS product was strongly biased for this basin, followed by the two products, GPM-E
and GPM-L, which showed almost similar bias and, then, the PDIR, CCS-CDR and GPM-F,
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respectively. The other basins showed smaller bias, ranging from −25% to 38%. Overall,
the GPM-F and CCS-CDR products showed the best performance across all basins.
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The results of CC, RMAE and RRMSE for each basin (Figure 10), showed that at
the daily scale, the GPM products exhibited higher correlation coefficients than the other
products for all the five basins. The GPM-F product performed well, with CC ranging
from 0.57 (basin 5) to 0.787 (basin 4). Indeed, basin 4 was the most correlated with the
observed data for all products at the daily scale, but it showed a higher RMAE as well. The
correlation was improved much more at the monthly scale than at the annual scale. At the
monthly scale, the GPM-F product was the most correlated with the observed data for all
basins (correlation coefficients from 0.75 to 0.84), followed by the CHIRPS (0.62–0.80) and
CCS-CDR (0.61–0.75), then the two products, GPM-E and GPM-L, which showed very close
results (0.38–0.77). The PDIR product was the least correlated with observations (0.5–0.6)
compared to the other products, with the exception of basin 3, for which it had a higher
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correlation coefficient than that obtained by GPM near real-time (GPM-E and GPM-L).
At the annual scale, the correlations decreased for the CHIRPS and CCS-CDR products.
They showed results closer to GPM-E for the majority of the areas. The PDIR product
was, once again, the least performing at this scale for almost all the basins. The results in
basin 4 showed the highest bias, especially at the annual and monthly scales. Despite good
correlation coefficients (at the daily time step), it showed the highest RMAE and RRMSE
for all the products used. The other basins were more or less close to each other in terms of
performances. Basin 3 also presented a lower performance, showing weaker correlations at
all temporal scales and for the majority of products, as well as a more noticeable bias at the
monthly scale, especially for the GPM products.
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5. Discussion

In this study, the evaluation of the six SPPs was based on continuous statistical indices
to quantitatively evaluate these products, as well as categorical indices that were used to
determine their detection capabilities. The evaluation was carried out on three temporal
scales, daily, monthly and annually, as well as at two spatial scales, at the scale of the pixel
located above the rain-gauge and at the scale of five different basins, by comparing the
mean precipitation of the rain gauges located in each basin with the average of the satellite
pixels that covered the basin.

• At the pixel scale

We used 33 rain gauges to evaluate the different satellite products in this study
covering the time period from 2000 to 2020. The results showed that the corrected products
with observed data had the lowest bias (Figure 2), compared to the near-real-time products.
The lowest correlations with observed data were obtained at the daily scale (Figure 3),
which were improved (for all products) at the monthly scale. The decrease in performance
for the annual scale was possibly due to the number of observations, which corresponded
to just 20 observations, compared to 240 observations for the monthly scale, in the context
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of strong inter-annual variability. The GPM-F product was the best performing product
at all time scales, and other studies have also found that the GPM-F product performs
well compared to other products. Over Saudi Arabia, Mahmoud et al. (2018) [78] and
Mahmoud et al. (2020) [79] evaluated the three versions of the IMERG product and also
found that the GPM-F was the most accurate over the country and could, therefore, be
used as a complement to ground-based measurements. Over Iran, Keikhosravi-Kiany
et al. (2022) [80] evaluated four products and found that the GPM IMERG and TRMM
outperformed Chirps in estimating precipitation amounts. Similar results with GPM-F
were found in China, Malaysia and Pakistan and [3,81,82]. In the present study, this product
showed the highest correlations, as well as the lowest values of RMAE and RRMSE, for
all the time scales. Moreover, the other two GPM products even exceeded the corrected
products on a daily basis. However, at the monthly and annual scales, the corrected
products (CHIRPS and CCS-CDR) improved their performance and ranked second, after
the GPM-F product. The PDIR showed the lowest performances at all scales, followed
by the GPM-E and GPM-L products at the annual and monthly scales. The two products,
GPM-E and GPM-L, showed very similar results, with these results being similar to [3].

To understand the effect of the topography, the continentality and the aridity on the
performance of the satellite products, different statistical indices were calculated according
to these three factors. The evolution according to the altitudes (Figures 4 and 5) showed that
the relative bias increased strongly towards the higher altitudes. However, stations with
low altitudes that were located close to the ocean (Figure S1), moderately overestimated the
observed precipitation. This area has complex weather conditions, influenced, in particular,
by seasonal frontal systems causing rainfall. For the middle altitudes, the products showed
varied behavior but, generally, they exhibited a moderate underestimation. In contrast, the
stations located in the high altitudes showed a strong overestimation, more specifically
for the uncorrected products. The large overestimation observed in these regions might
have been due to several factors, the sub-cloud evaporation being one of them, i.e., in
arid regions where the atmosphere is very warm, precipitation may be evaporated before
reaching the surface, thus leading to an overestimation by satellite [83]. The presence of
cold clouds may contribute to an overestimation of precipitation by products [19], since the
algorithms to estimate precipitation from space are based primarily on the temperature
at the top of the cloud. The Cold Cloud Duration (CCD), i.e., the length of time a pixel
remains below a given threshold, is assumed to be linearly related to the occurrence of
rain [84]. However, some cold clouds can be non-rainy, like cirrus clouds. The presence of
snow at high altitudes may be another factor, either contributing to the clogging of the rain
gauges, and, therefore, underestimation of the observed rainfall, or a misidentification of
snow as rain, since they have a similar microwave signature [85]. This is consistent with the
findings of [86] for medium and high altitudes over Morocco. On the other hand, the results
of [25] over Italy, found that satellite data underestimated the ground measurements of
precipitation, and that there was higher underestimation in high-elevation areas. The trends
of RMAE and RRMSE also showed an increase from low to high altitudes (Figure 5) at all
scales. The correlation also decreased, especially at monthly and annual scales. According
to [87], over a watershed in the north of Morocco, and [78], similar results were found
regarding the increase of bias and decrease of correlation towards higher altitudes.

Regarding the evaluation by latitude, the correlation exhibited a tendency to increase
towards the most arid areas for both monthly and annual scales. The error (Bias, RMAE and
RRMSE) also decreased when moving towards these areas (Figures 6 and 7), which showed
that these products performed well in arid regions in detecting rainy events. Several studies
have shown that some products perform better during the dry season than the rainy season
in terms of bias, e.g., [88]. This may be due to the presence of intense, and especially
irregular rainfall concentrated in this period [88]. It may also be due to the presence of
snow in the northern part with high altitudes, and the performance of these products
decreases in the presence of snow, as mentioned before.
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The detection capacity was calculated using three detection indices (POD, FAR and
CSI) by adopting a threshold of 1 mm/day, and according to altitude, longitude and latitude.
The results are presented in supplementary material (Figures S3–S5). The PDIR product
outperformed the other products in terms of detection probability, which was not expected;
especially as it was the least performing product for other metrics. To better understand
these results and distinguish the origin of this improvement, we adopted different intensity
classes (Figure 8). The results demonstrated that all these products had a low detection
capacity in the adopted intervals. POD and CSI did not exceed 0.4 in median, and the false
alarm ratios were very high, and could reach up to 1 in median. This was the case for PDIR
at an intensity ≥ 40 mm/d. The high FAR values for all intensities might have mainly been
due to the sub-cloud evaporation present in these sub-arid regions. Similar results were
found by [89] regarding the false alarm ratio in an arid climate (United Arab Emirates),
and by [90] across the complex topographical and climatic gradients of Chile, where their
results showed that the majority of the evaluated products exhibited poor performance
at event detection, as well as having very high false alarm ratios in different intensity
intervals. The GPM products were the best performing, especially the GPM-F product
for almost all classes lower than 40 mm/day and the other GPM products (GPM-L and
GPM-E) for extreme intensities (≥ 40 mm/day), while the PDIR product showed the lowest
results. The relative bias was calculated for each precipitation intensity (Figure S6), and
the results showed that all these products strongly overestimated low intensities, and they
underestimated in other intervals of high intensities, especially for intensities ≥ 40 mm/d.
The two GPM near real-time products performed better in this interval. Similar results were
found by [81], when comparing 3 satellite products over Malaysia, who found that all SPPs
underestimated extreme (>50 mm/day) precipitation classes, but overestimated moderate
to heavy (1–50 mm/day) precipitation events. This overestimation of low intensities and
underestimation of high intensities was also reported in the study of [89] over the United
Arab Emirates, and may be due to sub-cloud evaporation for low intensities, and the low
frequency of high intensities in a semi-arid/arid context, where underestimation or non-
detection of a single event can be responsible for very large error. This study agreed with
previous studies [90,91] and emphasized the importance of using different thresholds or
intensity classes to evaluate satellite products, rather than just one threshold to determine
the occurrence of precipitation.

• At the basin scale

Overall, at the basin scale, the products showed similar performances to those obtained
at the pixel level. The GPM-F product consistently performed best for all the five basins.
The PDIR product exhibited the poorest performance. At the daily scale, the GPM products
performed better than the other products, although the performance of its early version
was reduced at the monthly scale, where CHIRPS and CCS-CDR ranked after the GPM-F
product. At the annual scale, the GPM-E and GPM-L products showed very close results
to CHIRPS and CCS-CDR for the majority of basins. Basin 4 showed the highest bias for
all products (Figure 9), while the other basins showed a lower bias that varied from one
product to another, between −25.26% and 38.18%. Overall, basins 3 and 4 exhibited the
lowest results; basin 3 in terms of correlation and basin 4 in terms of bias. These two basins
are mountainous watersheds, with the highest altitudes (Figure 1).

The detection capability was also calculated for the five basins. The results showed that
for a threshold of 1 mm/d (Figure S7), which determined rain/no rain days, the three GPM
products showed similar results with POD between 0.42 and 0.8, which confirmed their
already shown good performances at the daily scale. The GPM-F product also exhibited the
lowest FAR, as well as the highest CSI coefficients, for all basins. By using the five different
intensity classes (Figures S8–S10), the GPM-F product performed better for intensities
below 40 mm/d. For intensities ≥ 40 mm/d, the other GPM products outperformed it for
basin 4, in which they recorded a very high POD and CSI, which reached 1.

In comparison with the results obtained at the pixel scale, the correlation coefficients
were improved at the daily scale for all the products. They varied between 0.28 and
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0.79 at the basin scale, while at the pixel scale they varied between 0.26 and 0.55. At the
monthly scale, the correlation coefficients ranged between 0.38 and 0.84 for the basins, and
between 0.47 and 0.76 at the pixel scale. For the annual scale, they varied between 0.33–0.75
at the basin scale and between 0.39–0.67 at the pixel scale. The detection probability
was also improved at the basin scale; it surpassed that obtained at the pixel scale for
all thresholds, as well as for the selected products, especially the GPM-F product. Its
detection probabilities reached 0.79, 0.58, 0.47 and 0.44 for the thresholds 0–1, 1–5, 5–20 and
20–40 mm/d, respectively. For the threshold ≥40 mm/d, the other near real-time GPM
products performed better, especially for basin 4.

6. Conclusions and Perspectives

In this study, we evaluated six satellite precipitation products with a high spatial
and temporal resolution, i.e., GPM-F, CHIRPS, CCS-CDR, GPM-L, GPM-E and PDIR-Now.
These products were evaluated against ground-based datasets in sub-Saharan Morocco for
the period from September 2000 to August 2020. Temporally, the analysis was performed
at daily, monthly and annual scales, and spatially at both basin and pixel scales. Several
quantitative and qualitative statistical indices were used and the SPPs performances were
evaluated according to the altitude, latitude and the continentality of the rain-gauge. The
main findings of the study were that the GPM-F product showed the most satisfactory
results for all time scales and for both spatial scales, followed by the CHIRPS and CCS-
CDR products at the monthly and annual scales, and by the GPM-E and GPM-L products
at the daily scale. The PDIR product exhibited the poorest performance. Spatially, all
products had a lower performance at high altitudes; the bias increased, and the correlation
decreased at higher altitudes. The evaluation, according to the latitudes, i.e., from north
to south, showed an increase of correlation and decrease of bias towards the most arid
zones of the region. Furthermore, the GPM products performed well in terms of detection
capacity for both spatial scales. The best performing product, for almost all intensities
below 40 mm per day, was the GPM-F. The other products, GPM-L and GPM-E, had better
skills for higher intensities (≥40 mm/d). Compared to oceanic basins, the continental and
mountainous basins showed the lowest results in terms of correlation and bias. The other
basins presented very similar results, according to the rainfall product considered. At the
daily scale, the SPPs performed better at the regional scale (basin) than at the pixel scale,
especially in terms of correlation and detection probability.

In summary, the geographical position and the topography clearly affected the per-
formance of the satellite precipitation products to reproduce rainfall patterns. The results
suggest they are appropriate for these arid environments, especially the GPM-F product
that could be used for water resources management and GPM-E for near real-time flood
warnings. The statistical results obtained on a daily scale for different basins are very en-
couraging for the use of these products in hydrological studies, notably for rainfall–runoff
modeling. To this end, we strongly recommend investigating and studying these new data
sources for the different natural hazards linked to precipitation, such as floods, droughts,
and landslides, especially in regions where the observed network is highly dispersed and
based only on a daily time series, such as in the study region.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14203336/s1, Figure S1: The relative bias of the satellite estimates
according to the rain-gauge longitudes; Figure S2: Continuous metrics according to longitudes for the
daily, monthly and annual scales; Figure S3: Categorical indices according to the rain-gauge altitudes,
for a threshold of 1 mm/d; Figure S4: Categorical indices according to the rain-gauge longitudes,
for a threshold of 1 mm/d; Figure S5: Categorical indices according to the rain-gauge latitudes, for
a threshold of 1 mm/d; Figure S6: Median of the relative bias over all rain-gauge stations for each
intensity class; Figure S7: Categorical metrics for each product at the basin scale, for a threshold of
1 mm/d; Figure S8: The probability of detection (POD) for each product and for the five intensity
classes at the basin scale; Figure S9: The false alarm ratio (FAR) for each product and for the five
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intensity classes at the basin scale; Figure S10: The critical success index (CSI) for each product and
for the five intensity classes at the basin scale.
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