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Deforestation intensifies daily temperature
variability in the northern extratropics

Jun Ge 1,2,7 , Qi Liu 1,2,7, Beilei Zan3,4,5, Zhiqiang Lin6, Sha Lu1,2, Bo Qiu 1,2 &
Weidong Guo 1,2

While the biogeophysical effects of deforestation on average and extreme
temperatures are broadly documented, how deforestation influences tem-
perature variability remains largely unknown. To fill this knowledge gap, we
investigate the biogeophysical effects of idealized deforestation on daily
temperature variability at the global scale based on multiple earth system
models and in situ observations. Here, we show that deforestation can inten-
sify daily temperature variability (by up to 20%) in the northern extratropics,
particularly in winter, leading to more frequent rapid extreme warming and
cooling events. The higher temperature variability can be attributed to the
enhanced near-surface horizontal temperature advection and simultaneously
is partly offset by the lower variability in surface sensible heat flux. We also
show responses of daily temperature variability to historical deforestation and
future potential afforestation. This study reveals the overlooked effects of
deforestation or afforestation on temperature variability and has implications
for large-scale afforestation in northern extratropic countries.

Forests have undergone tremendous losses and gains due to human
and natural disturbances in recent decades1,2. In addition to the impact
on the carbon cycle, deforestation also has profound impacts on local
and regional climate through biogeophysical processes3. On the one
hand, deforestation enlarges the surface albedo and cools the climate;
on the other hand, deforestation diminishes evapotranspiration and
warms the climate due to the lower aerodynamic roughness, rooting
depth, leaf area, and canopy conductance for transpiration4–6. The
albedo-driven cooling effect dominates boreal regions, whereas the
evapotranspiration-driven warming effect dominates the tropics7–10. In
the mid-latitudes, however, the deforestation effect is complicated
and uncertain because of the lowermodel agreement in this regard11,12.
Deforestation also causes daytime warming and nighttime cooling
effects over most regions of the world9,13–15. This diurnal asymmetry of
temperature responses to deforestation amplifies the diurnal

temperature range10,15. Deforestation can further influence tempera-
ture extremes, particularly hot extremes16–20. On hot days, forests can
maintain a relatively lower ambient temperature due to sustained
evapotranspiration and more efficient heat dissipation16; thus, defor-
estation tends to aggravate hot extremes16,19,20. This effect, however, is
uncertain because some studies also report alleviated hot extremes
following deforestation17,18.

Although the deforestation effects on themean, the diurnal cycle,
and extremes of temperature have been widely documented, how
deforestation influences temperature variability remains largely
unknown. Temperature variability describes fluctuations in a time
series of temperature at various (from daily to decadal) time scales. In
particular, the high-frequency daily temperature variability is closely
related to human and natural systems. For example, enhanced daily
temperature variability causes higher risks of mortality induced by
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chronic disease21–23 or epidemic disease24,25. Changes in daily tem-
perature variability also influence ecosystem functions, such as crop
yields26–28 and coral bleaching29. Higher daily temperature variability
can even threaten macroeconomic growth30. Statistically speaking, an
increase in variability commonly coincides with a higher tail prob-
ability, implyingmore frequentweather and climate extremeevents31,32

and consequently widespread adverse impacts on nature and
humans33. Therefore, understanding the deforestation effect on tem-
perature variability is as important as understanding the effects on the
temperature mean and extremes.

The historical daily temperature variability is observed to
decrease overall in the northern mid- and high-latitude continents in
boreal winter, spring, and autumn34–38 but to increase in a few regions
in boreal summer37–39. Changes in daily temperature variability were
previously attributed to anthropogenic greenhouse gas (GHG)
emissions35–38, aerosols36–38, urbanization40, and internal climate
variability37,38 but were rarely linked to forest changes. Given the large-
scale deforestation worldwide during the historical period1,2, examin-
ing the deforestation effect on daily temperature variability can
improve our understanding of human contributions to the evolution
of daily temperature variability. Furthermore, afforestation has been
broadly proposed as a nature-based solution to mitigate climate
warming. This proposal is mostly built on the cooling effect of affor-
estation through carbon sequestration and some biogeophysical
processes (e.g., the evaporative cooling effect)41–43, but the afforesta-
tion effect on temperature variability has never been considered and
evaluated. Therefore, understanding the afforestation effect on daily
temperature variability can help to avoid unanticipated climatic con-
sequences following the implementation of large-scale afforestation.

In this study, we investigate the biogeophysical effect of idea-
lized deforestation on daily temperature variability at the global scale
based on multiple earth system models and in situ observations. We
also explore the potential mechanisms for the deforestation effect
based on the thermodynamic energy equation. The results show that
large-scale deforestation can intensify regional daily temperature
variability in thenorthernextratropics, particularly inwinter. As a result,
the deforested areas suffer frommore frequent rapid extremewarming
and cooling events. The higher temperature variability is mainly
attributed to the enhanced near-surface horizontal temperature
advection (TADV) and simultaneously is partly offset by the lower
variability in surface sensible heat flux (SHF). Moreover, we also detect
higher daily temperature variability in North America due to large-scale
deforestation since 1850. The deforestation effect even offsets the total
effect of other anthropogenic forcings (e.g., GHGs) at regional scales. In
contrast, large-scale afforestation in North America is projected to
reduce daily temperature variability by the end of the twenty-first
century. This study reveals the overlooked human influence on daily
temperature variability through deforestation or afforestation, which
has implications for policy decisions on the implementation of large-
scale afforestation.

Results
The deforestation effect on daily temperature variability
We first examine the biogeophysical effect of deforestation on daily
temperature variability on a global scale. To identify all hot-spot
regions where daily temperature variability is susceptible to defor-
estation, the preindustrial control simulation (piControl) of the Cou-
pled Model Intercomparison Project Phase 644 (CMIP6) and the
idealized global deforestation simulation (deforest-globe) of the Land
UseModel Intercomparison Project45 (LUMIP) are used. For piControl,
all external forcings are fixed at preindustrial levels (see Methods).
deforest-globe is identical to piControl, except removing 20 million
km2 of forests globally in the first 50 years (Fig. 1a, b; see Methods); in
the following 30 years, the total tree cover is maintained unchanged
(Fig. 1b). Vegetation dynamics are required to be switched off in the

deforested grid cells for deforest-globe45. The biogeophysical effect of
the idealized deforestation can be isolated through the comparison of
the last 30-year (years 51–80) simulations of piControl and deforest-
globe (deforest-globe minus piControl; see Methods). While such
large-scale deforestation is unrealistic, using the idealized deforesta-
tion scenario still makes sense. First, this scenario enhances the
intermodel consistency in the prescribed deforestation and thereby
enables amoremeaningful comparison of the simulated deforestation
effects across the models45. Second, this scenario makes it easier to
establish thedeforestation signal from themodel stochastic noise. Five
earth systemmodels are used here given themodel output availability
(Supplementary Table 1).

Daily temperature variability is quantified by the day-to-day var-
iation index34. The day-to-day temperature variation (DTDT) is defined
as the mean value of absolute differences in daily mean 2-meter tem-
perature between every two neighboring days during a given time
period (see Methods). We first evaluate the model performance in the
DTDT simulation with two independent reanalysis datasets: the ERA5
reanalysis46 and the NCEP-DOE AMIP-II reanalysis47 (see Methods).
Validated with the reanalysis, the models can reasonably simulate the
spatial pattern of DTDT. DTDT is overall larger at higher-latitude con-
tinents (Supplementary Fig. 1a–d, i–p). Moreover, DTDT is larger in
winter (December, January, and February), followed by spring (March,
April, andMay) and autumn (September,October, andNovember), and
lowest in summer (June, July, and August) in the northern extratropics.

We also evaluate the model representation of the biogeophysical
effect of deforestation on mean surface temperature with a satellite-
based dataset13,48. This dataset provides the observed biogeophysical
effect of deforestationat the global scale basedon the “space-for-time”
substitution method, that is, the comparison of the spatially adjacent
forest and openland pixels48 (see Methods). The models consistently
suggest a cooling effect of deforestation in the northern extratropics
(Supplementary Fig. 2a–d). In the tropics, however, the models show
less agreement on the deforestation effect, and the multimodel mean
suggests a warming effect of deforestation. The simulations are overall
consistent with the observations (Supplementary Fig. 2e, f) and pre-
vious studies7–10. Note that, in contrast to the observations, themodels
simulate a more widespread cooling effect of deforestation in the
northern mid-latitudes. This discrepancy is mainly attributed to the
fact that the deforestation-induced atmospheric feedbacks (e.g., cloud
formation) to surface temperature are fully considered in the models
but absent in the observed signal due to the application of the “space-
for-time” method49,50; this method assumes identical background cli-
mate over the paired forest and openland pixels. It has been demon-
strated that the atmospheric feedbacks are considerable and mostly
explain the simulated cooling effect of deforestation in the northern
mid-latitudes49,50.

Figure 1c–f shows the biogeophysical effect of deforestation on
DTDT for each season. Themultimodelmean result is shownhere, and
the black dots denote the model agreement on the sign of the DTDT
change. The models suggest a widespread increase in DTDT in defor-
ested areas in the northern extratropics, e.g., North America and Eur-
asia. The DTDT signal is stronger (up to 0.7 °C or 20%) in winter,
moderate in spring and autumn (between0.1 and0.5 °C or 10 and 15%),
and weaker in summer (between 0.05 and 0.3 °C or 5 and 10%). More
importantly, all five models agree well on the sign of the DTDT change
(see the black dots), implying a robust signal across the models. In
other deforested areas (e.g., the tropics and the Southern Hemi-
sphere), however, the DTDT response to deforestation is mostly neg-
ligibly small (within ± 0.05 °C or ±5%) and has low intermodel
consistency.

Daily temperature variability can also be quantified by a more
commonly used index, namely, the standard deviation of the daily
mean 2-meter temperature during a given time period32 (SDT; see
Methods). Themodel behavior in the SDT simulation is also reasonable
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when validated against the reanalysis (Supplementary Fig. 3a–d, i–p).
Similarly, themultimodel mean also suggests a widespread increase in
SDT in the northern extratropical deforested areas, particularly in
winter (Supplementary Fig. 4). The consistent DTDT and SDT
responses to deforestation indicate that the result is independent of
the metrics of daily temperature variability.

In addition to the simulations, we attempt to find observational
evidence of the deforestation effect on daily temperature variability.
To this end, 24 selected pairs of spatially adjacent forest and openland
sites in North America and Europe (Supplementary Fig. 5 and Sup-
plementary Table 3) from the FLUXNET and AmeriFlux datasets are
used51–53 (see Methods). The box-and-whisker plots imbedded in
Fig. 1c–f show the DTDT differences between the paired forest and
openland sites (openland minus forest) for each season. The DTDT
differences across the paired sites are positively biased (with a mean
value of 0.07 °C) in winter, implying overall higher daily temperature
variability over openland sites thanneighboring forest sites. This result
confirms the enhanced wintertime daily temperature variability in the

northern extratropical deforested areas in the simulations. For other
seasons, however, the DTDT differences across the paired sites are
either negatively biased or unbiased. This result implies that the
DTDTs of openland sites are overall smaller than or identical to
the values of neighboring forest sites. This result is in contrast with
the simulated result, which is discussed later.

The deforestation effect on rapid warming and cooling events
Since DTDT is calculated as the absolute value of temperature differ-
ences between neighboring days, DTDT itself only reflects the mag-
nitude of daily temperature variability. In fact, the temperature
difference between neighboring days (δT) can be either positive or
negative, and positive and negative δT values indicate rapid warming
and cooling events, respectively. Thus, the following question emer-
ges: how do rapid warming and cooling events respond to deforesta-
tion and contribute to the increased DTDT?

To answer this question, Fig. 2 shows the probability density dis-
tributions of δT before and after deforestation for each season in the

Fig. 1 | Tree fraction changes in the idealized deforestation scenario and the
biogeophysical effects ondaily temperature variability. aMultimodelmean tree
fraction changes by the end of the deforest-globe simulation. b The evolution of
tree cover for each model in deforest-globe. c–f The multimodel mean differences
in day-to-day temperature variability (DTDT) in c DJF (December, January, and
February), dMAM (March, April, andMay), e JJA (June, July, and August), and f SON
(September, October, and November) between the piControl and deforest-globe
simulations (deforest-globleminus piControl). The black dots in c–f denote that all

five models agree on the sign of the DTDT change. The black rectangles in c cover
the two regions in North America (38–54°N, 60–122°W) and Eurasia (52–66°N,
20–120°E), which are further analyzed in Fig. 2. The box-and-whisker plots
embedded in c–f show the DTDT differences between the paired forest and
openland sites (openland minus forest; Supplementary Fig. 5) from the FLUXNET
and AmeriFlux datasets. The horizontal black line of the box denotes the median.
The bottom and top edges of the box denote the 25th and 75th percentiles,
respectively. The whiskers extend to the 10th and 90th percentiles.
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deforested areas in North America (38–54°N, 60–122°W) and Eurasia
(52–66°N, 20–120°E; denoted by the black rectangles in Fig. 1c).
Compared to the piControl simulation (blue bars), the frequency is
lower for the near-zero region (e.g., −3 °C < δT < 3 °C) and higher for
the tail regions (e.g., δT < −3 °C or δT > 3 °C) for the deforest-globe
simulation (orange bars). Meanwhile, the frequency changes for the
left and right tail regions are almost identical. Taking North America as
an example, the frequency for wintertime δT within −3 °C to 3 °C

decreases by 5.3%, whereas the frequency for wintertime δT below
−3 °C and above 3 °C increases by 2.8% and 2.5%, respectively (Fig. 2a).
This result implies an increased likelihood of both rapid cooling and
warming events following deforestation. Moreover, the difference in
the probability density distribution of δT between piControl and
deforest-globe is statistically significant at the 95% confidence level
(see the p value in Fig. 2) tested by the Kolmogorov–Smirnov two-
sample test (see Methods), except for Eurasia in summer.

North America
2.8% -5.3% 2.5%

a

p<0.05

0 

5 

10

D
JF

F
re

qu
en

cy
 (

%
)

piControl deforest-globe Percentage changes

Eurasia
2.3% -4.6% 2.3%

e

p<0.05

-100

-50 

0   

50  

100 

P
er

ce
nt

ag
e 

ch
an

ge
s 

(%
)

1.8% -4.2% 2.3%
b

p<0.05

0 

5 

10

15

M
A

M
F

re
qu

en
cy

 (
%

)

1.5% -3.4% 1.9%
f

p<0.05

-100

-50 

0   

50  

100 

P
er

ce
nt

ag
e 

ch
an

ge
s 

(%
)

1% -2% 1.1%
c

p<0.05

0 

5 

10

15

20

JJ
A

F
re

qu
en

cy
 (

%
)

-0.1% -0.1% 0.2%
g

p>0.05

-100

-50 

0   

50  

100 

P
er

ce
nt

ag
e 

ch
an

ge
s 

(%
)

1.4% -2.8% 1.4%
d

p<0.05

-20 -15 -10 -5 0  5  10 15 20 

T

0 

5 

10

15

S
O

N
F

re
qu

en
cy

 (
%

)

1.2% -2.6% 1.4%
h

p<0.05

-20 -15 -10 -5 0  5  10 15 20 

T

-100

-50 

0   

50  

100 

P
er

ce
nt

ag
e 

ch
an

ge
s 

(%
)

Fig. 2 | The deforestation effect on temperature differences between neigh-
boringdays.Theprobability density distribution of temperature differences between
neighboring days (δT) for the piControl (blue bars) and deforest-globe (orange bars)
simulations in the deforested areas of a–dNorthAmerica and e–h Eurasia (denoted by
the black rectangles in Fig. 1c) in a, eDJF (December, January and February), b, fMAM
(March, April and May), c, g JJA (June, July and August), and d, h SON (September,

October and November). The p value denotes the statistical significance of the dif-
ference in the distribution of δT between piControl and deforest-globe tested by the
Kolmogorov–Smirnov two-sample test. The frequency changes for the near-zero
(−3 °C<δT<3 °C), left tail (δT<−3 °C) and right tail (δT>3 °C) regions are shown
at the top of each panel. The green line shows the percentage change
(deforest�globe�piControl

piControl × 100%) in the frequency for each δT bin due to deforestation.
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Intuitively, the deforestation-induced increase in the frequency for
the tail regions seems small (nomore than 6%). Given the low frequency
for the tail regions, however, such an increase is not trivial. We further
examine the percentage change (deforest�globe�piControl

piControl × 100%) in the
probability density distribution of δT following deforestation (see the
green lines in Fig. 2). The percentage change in the frequency for the tail
regions is considerable and nonmonotonically increases with higher
magnitudes of δT. For example, the frequencies of moderate
(−10 °C<δT< −5 °C or 5 °C<δT < 10 °C) and extreme (δT< −10 °C or
δT> 10 °C) wintertime δT increase by 12.8% and 34.1%, respectively, in
North America. Note that such percentage changes in the frequency for
the tail regions can be even larger at local scales (Supplementary Fig. 6).
This amplified increase in the frequency for the tail regions implies
larger influences of deforestation on more extreme rapid warming or
cooling events.

The mechanisms for the deforestation effect on daily tempera-
ture variability
Explaining the change in temperature variability is always challenging,
and we attempt to reveal the mechanisms for the deforestation effect
on DTDT based on the thermodynamic energy equation54. Following
this equation, an increase in DTDT can be attributed to (1) an increase

in near-surface horizontal TADV and/or (2) an increase in the day-to-
day variation in surface sensible heat flux (DTDSHF; see Methods).

Figure 3a–d shows the TADV response to deforestation for each
season. The CanESM5 result is shown here because only this model
provides the required daily 10-m wind speed to calculate the daily
TADV. The CanESM5model suggests a widespread increase in TADV in
most deforested areas and neighboring regions (Fig. 3a–d). The TADV
signal is stronger (>0.5 °C) in the northern extratropical deforested
areas, with the largest magnitude in winter, followed by spring and
autumn, and the lowest magnitude in summer. However, the TADV
signal is mostly weaker (within 0.3 °C) in the deforested areas in the
tropics and the Southern Hemisphere, except for somemarginal areas
of the Amazon basin and the Indo–China Peninsula, throughout
the year.

An increase in TADV can be further attributed to an increase in
near-surface wind speed or horizontal temperature gradient (see
Methods). Figure 3e–l shows the multimodel mean responses of near-
surface wind speed and horizontal temperature gradient to defor-
estation for each season. The models (Fig. 3e–h) consistently suggest
an increase in wind speed due to the lower surface roughness in
deforested areas. This result is also supported by the paired site
observations (see the box-and-whisker plots imbedded in Fig. 3e–h),

Fig. 3 | The deforestation effect on near-surface horizontal temperature
advection and its components. The differences in near-surface horizontal tem-
perature advection (ΔTADV), wind speed (Δu), and themagnitudeof the horizontal
temperature gradient (ΔTGRAD) in a, e, i DJF (December, January and February),
b, f, jMAM (March, April andMay), c,g,k JJA (June, July andAugust), andd,h, l SON
(September, October and November) between the piControl and deforest-globe
simulations (deforest-globe minus piControl). ΔTADV is from the CanESM5model,
and the black dots in a–d indicate that ΔTADV is statistically significant at the 95%

confidence level tested by Student’s t-test. Δu and ΔTGRAD are from the multi-
modelmean, and the black dots in e–l indicate that allfivemodels agree on the sign
of Δu or ΔTGRAD. The box-and-whisker plots embedded in e–h show the wind
speed differences between the paired forest and openland sites (openland minus
forest; Supplementary Fig. 5) from the FLUXNET and AmeriFlux datasets. The
horizontal black line of the box denotes the median. The bottom and top edges of
the box denote the 25th and 75th percentiles, respectively. The whiskers extend to
the 10th and 90th percentiles.
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which show overall higher wind speeds in openland sites than in
neighboring forest sites. The models also consistently suggest an
increase in temperature gradient in somemidlatitude deforested areas
in winter and spring (Fig. 3i–l). This enhanced temperature gradient
canbe explainedby the strong cooling effect of deforestation in boreal
regions, which increases the north-south temperature difference. The
increasedwind speed and temperature gradient collaborate to enlarge
the TADV in the northern extratropical deforested areas.

Figure 4a–d shows the multimodel mean DTDSHF response to
deforestation for each season. Themodels consistently suggest a year-
round decrease in DTDSHF in almost all deforested areas (Fig. 4a–d).
The DTDSHF change is larger (up to −9W·m−2) in spring and summer
but small (mostly within −3W·m−2) in winter and autumn in the
northern extratropical deforested areas. For the tropical deforested
areas, however, the DTDSHF change is moderate (−5 to −1W·m−2) and
stable throughout the year. In line with the simulations, the paired site
observations also show lower DTDSHFs in openland sites than in
neighboring forest sites. Such a decrease in DTDSHF can be explained
by the decreased surface aerodynamic roughness following defor-
estation. The lower roughness causes the surface to be less efficient in
warming the aboveground atmosphere through turbulence, suppres-
sing the daily variability in SHF. The daily variability of SHF can be

alternatively quantified by the standard deviation index, and a similar
result can be obtained (not shown).

To explain the seasonal variation in the DTDSHF response to
deforestation, we further examine the daily variabilities in the other
components (including shortwave and longwave radiations and latent
heat flux) of the surface energy balance based on the CanESM model
given data availability. As shown in Fig. 4e–l, the daily variabilities in
surface upward shortwave radiation (DTDUSR) and albedo (DTDα)
increase in deforested areas. This result indicates that deforestation
enlarges not only the surface albedo and the reflected solar radiation,
but also their variabilities. In the northern extratropic deforested
areas, the DTDUSR change is larger in spring because of the larger
DTDα change (due to the snow cover) as well as the higher springtime
solar radiation. The larger DTDUSR change mostly explains the larger
DTDSHF change in the northern extratropic deforested areas in spring.
Moreover, the simulated responses of DTDSUR and DTDα to defor-
estation are also supported by the paired site observations (see the
box-and-whisker plots embedded in Fig. 4e–l). The daily variabilities in
surface net longwave radiation and latent heat flux are less influenced
by deforestation (not shown).

The DTDSHF and TADV changes can basically explain the DTDT
response to deforestation. For the northern extratropical deforested
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mean, and the black dots in a–d indicate that all five models agree on the sign of

ΔDTDSHF. ΔDTDUSR andΔDTDα are from the CanESM5model, and the black dots
in e–l indicate that ΔDTDUSR or ΔDTDα is statistically significant at the 95% con-
fidence level tested by Student’s t-test. Thebox-and-whiskerplot embedded in each
panel shows the corresponding difference between the paired forest and openland
sites (openland minus forest; Supplementary Fig. 5) from the FLUXNET and
AmeriFlux datasets. The horizontal black line of the box denotes the median. The
bottom and top edges of the box denote the 25th and 75th percentiles, respec-
tively. The whiskers extend to the 10th and 90th percentiles.
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areas, the enhanced TADV, despite being slightly offset by the
decreased DTDSHF, dominates the DTDT increase. Meanwhile, the
TADV signal is stronger in winter, spring and autumn, whereas the
DTDSHF signal is stronger in spring and summer, causing seasonal
variations in the DTDT response to deforestation there. For example,
the larger increase in wintertime DTDT is a consequence of the larger
increase in wintertime TADV and the small change in wintertime
DTDSHF. For the tropical deforested areas, however, the TADV change
is small and mostly offset by the decreased DTDSHF. Moreover, the
climatological mean DTDT is smaller in the tropics than in boreal
regions. As a result, the DTDT change is negligibly small in the tropical
deforested areas.

As mentioned earlier, the observed DTDT signal from the paired
sites is inconsistent with the simulated signal in spring and summer
(Fig. 1d, e). This discrepancy can be explained by the TADV response.
Specifically, the atmosphere above the paired forest and openland
sites tends to be mixed due to horizontal advection, alleviating the
TADV difference between the paired sites throughout the whole year.
Thus, the DTDT differences between the paired sites are more influ-
enced by the DTDSHF effect, particularly in spring and summer when
the TADV effect is smaller (inferred from the simulations) but the
DTDSHF effect is larger (Fig. 4a–d). That is why the observations
suggest anoverall lowerDTDT inopenland sites in spring and summer,
contrasting with the simulated DTDT change.

The effect of historical deforestation on daily temperature
variability
The above analysis is built on the idealized deforestation scenario,
which is unlikely to occur in the real world. We therefore wonder
whether the real-world deforestation over the historical period would
have generated a detectable signal as well. To this end, the historical
simulation (historical) of CMIP6 and the historical no land-use simula-
tion (hist-noLu) of LUMIP are used. historical covers the period of
1850–2014with evolving and externally imposed natural (e.g., solar and
volcanic aerosols) and anthropogenic (e.g., GHGs, aerosols, and land
use/land cover changes (LULCCs)) forcings (see Methods). hist-noLu is
identical to historical, except that LULCCs are fixed at preindustrial
levels (see Methods). The last 30-year simulations (1985–2014) of his-
torical and hist-noLu are compared (historical minus hist-noLu) to
isolate the deforestation effect. Nine earth system models are used
here given the model output availability (Supplementary Table S1).
These models are also reasonable in the DTDT simulation validated
against the reanalysis (Supplementary Fig. 1e–h, i–p; see Methods).

Tree cover changes during the historical period are highly het-
erogeneous in space with the concurrence of forest losses and gains
(Fig. 5a), whichmayconfound the signals arising from forest losses and
gains. Exceptionally, we find tremendous and spatially coherent tree
cover losses in North America since 1850 (Fig. 5a). Moreover, this
decreasing trend in tree cover is consistent across the models (Sup-
plementary Fig. 7), with the multimodel mean value of the net tree
cover loss being approximately −1.3 million km2 during the historical
period of 1850–2014. As a result of such large-scale deforestation,
seven out of the eight models simulate increases in wintertime DTDT
(withmultimodelmean values of 0.2–0.5 °C or 2–12%; Fig. 5b) and SDT
(with multimodel mean values of 0.2–0.6 °C or 2–10%; not shown). In
otherwords, historical deforestation has led to a detectable increase in
the wintertime daily temperature variability in North America. The
enhanced daily temperature variability can be attributed to the higher
TADV (Fig. 5d) and simultaneously is slightly offset by the lower
DTDSHF (Fig. 5c). Although the TADV change is from a single model
(ACCESS-ESM1-5) due to data availability, these mechanisms are con-
sistent with those for the effect of idealized deforestation. The con-
sistent DTDT responses to the idealized deforestation scenario and the
historical deforestation scenario as well as the consistent mechanisms
consolidate the robustness of the results.

Note that there is some spatial mismatch between the DTDT
change (Fig. 5b) and the TADV change (Fig. 5d) in North America. This
mismatch is because the pattern of tree cover changes for the ACCESS-
ESM1-5 model (Supplementary Fig. 7a) is slightly different from the
multimodel mean pattern (Fig. 5a). Examining the ACCESS-ESM1-5
model, we find that the DTDT and TADV changes from this model
overall match each other in terms of the geographical pattern (Fig. 5d
and Supplementary Fig. 8).

We further examine whether the deforestation effect on daily
temperature variability is noteworthy compared to the effects of other
anthropogenic forcings (e.g., GHGs and aerosols). To this end, the
historical natural-only simulation (hist-nat) of the Detection and
Attribution Model Intercomparison Project55 is used. hist-nat is iden-
tical to historical but is imposed by only natural forcings (see Meth-
ods). Accordingly, comparing the last 30-year (1985–2014) simulations
of historical and hist-nat (historical minus hist-nat) isolates the net
effect of all anthropogenic forcings (GHGs, aerosols, and LULCCs)
during the historical period. Averaged over global land, the defor-
estation effect on DTDT (0.01 °C) is much smaller than the combined
effect of GHGs and aerosols (−0.03 °C) in magnitude (Fig. 5f). At local
and regional scales, however, the deforestation effect can be com-
parable to the combined effect of GHGs and aerosols in magnitude,
particularly in deforested areas. In North America, for example, the
wintertime DTDT shows an overall decreasing trend during the his-
torical periodwith all anthropogenic forcings considered (Fig. 5e). This
decreasing trend in daily temperature variability is also supported by
previous studies34–37. Interestingly, this decreasing trend in DTDT is
mostly absent in the deforested area of North America (Fig. 5e),
implying that the positive effect of deforestation (Fig. 5c) largely offset
the combined effect of GHGs and aerosols. Averaged over the defor-
ested area of North America, the contributions of deforestation and
the combinedGHG and aerosol forcings to the historical DTDT change
are 0.11 and −0.17 °C, respectively (Fig. 5f).

The effect of potential afforestation on daily temperature
variability
Based on the above results, we speculate that future afforestation in the
northern extratropics may reduce daily temperature variability. To test
this speculation, the scenario simulation (ssp370) of the Scenario
Model Intercomparison Project55 and the future land-use policy sensi-
tivity simulation (ssp370-ssp126Lu) of the LUMIP are used. ssp370
covers the future period of 2015–2100 under the shared socioeconomic
pathway 3-7.0 scenario (SSP3-7.0) with substantial deforestation and
high emissions (see Methods). ssp370-ssp126Lu is identical to ssp370
except that LULCCs are from the shared socioeconomic pathway
1-2.6 scenario (SSP1-2.6) with substantial afforestation or reforestation.
The last 30-year simulations (2071–2100) of ssp370 and ssp370-
ssp126Lu are compared (ssp370-ssp126Lu minus ssp370) to isolate
the afforestation effect. Six earth systemmodels are usedhere given the
model output availability (Supplementary Table S1).

Figure 6a shows thedifferences in tree cover between the SSP1-2.6
and SSP3-7.0 scenarios by the end of the twenty-first century. Bene-
fiting from afforestation or reforestation anticipated by the SSP1-
2.6 scenario, we can see increases in tree cover in central Africa,
eastern America, the western Amazon, western Europe, and central
China. Figure 6b–e shows the biogeophysical effect of these tree cover
changes on DTDT for each season. As expected, the models con-
sistently project that the regionalDTDTwill be reduced by 0.06–0.1 °C
in winter, spring and autumn in eastern America by the end of the
twenty-first century. For western Europe and central China, however,
the afforestation effect on DTDT is mostly small, probably due to the
small increase in tree cover anticipated by the SSP1-2.6 scenario
(mostly within 10%). While the tree cover changes in central Africa and
the western Amazon are considerable, the effect on DTDT is also lim-
ited throughout the year. This small DTDT response can be attributed
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to the low sensitivity of DTDT to forest changes in these tropical
regions (Fig. 1c–f).

Discussion
Much attention has been given to the biogeophysical effects on the
mean, the diurnal cycle, or extremes of temperature, whereas the
effect on temperature variability has rarely been studied. Here, we
show that the biogeophysical effect of deforestation on daily tem-
perature variability is considerable. The higher daily temperature
variability can further lead to more frequent rapid warming and
cooling events. In particular, the deforestation effect on extreme
warming and cooling effects (e.g., the temperature difference between
neighboring days exceeding 10 °C) are larger, implying more frequent
extremeweather events, e.g., hot and cold waves. We also find that the

deforestation effect on daily temperature variability can be compar-
able to the effects of other anthropogenic forcings in magnitude at
local and regional scales. Therefore, this study highlights that the
biogeophysical effect of deforestation should also be consideredwhen
human contributions to the trend of daily temperature variability are
quantified.

In contrast to the deforestation effect, afforestation can reduce
the daily temperature variability in the northern extratropics. Since
changes in daily temperature variability have broad impacts on
humans21–25,30 and ecosystems26–29, our results have implications for the
implementation of large-scale afforestation or reforestationprograms,
particularly for northern extratropical countries. In these regions,
whether afforestation should be implemented remains controversial.
On theonehand, afforestation is recommendedbecause it can provide

Fig. 5 | Historical tree cover changes and their effects on wintertime daily
temperature variability. a Multimodel mean total tree fraction differences
between the historical and hist-noLu simulations (historical minus hist-noLu) dur-
ing the historical period (1850–2014). The biogeophysical effect of historical tree
cover changes on b day-to-day temperature variability (DTDT), c day-to-day
variability in sensible heat flux (DTDSHF), and d the near-surface horizontal tem-
perature advection (TADV) in DJF (December, January and February). The DTDT
andDTDTSHFchanges are from themean value of eightmodels, and the black dots
in b and c indicate that at least seven out of the eight models agree on the sign of

the change. The TADV change is from the ACCESS-ESM1-5 model, and the black
dots in d indicate that the TADV change is statistically significant at the 95% con-
fidence level tested by Student’s t-test. e The net effects of all anthropogenic for-
cings, including greenhouse gases (GHGs), aerosols, and land use/land cover
changes (LULCCs), on DTDT in DJF during the historical period. In panel e, the
DTDT change is from the mean value of four models, and the black dots indicate
that all four models agree on the sign of the change. f The individual contributions
of anthropogenic forcings to the historical DTDT change averaged over global land
and the deforested area (total tree cover loss >5%) of North America.
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invaluable ecological, economic, social, and aesthetic services3.
Afforestation is also expected tomitigate climatewarming through the
carbon sequestration effect56 and to alleviate the risks of hot extremes
through higher heat dissipation and evaporative efficiency16,19,20. On
the other hand, afforestation is not recommended, as it may fail to
mitigate climate warming due to albedo-driven warming effects43,57,58.
In addition to the afforestation effect on the carbon cycle and tem-
perature mean and extremes discussed in previous studies, we call for
further taking the afforestation effect on daily temperature variability
into consideration when large-scale afforestation or reforestation is
implemented in northern extratropical countries.

We identify the enhanced near-surface horizontal wind speed and
TADV as the main drivers of the higher daily temperature variability
over deforested areas. It should be emphasized that the response of
wind to deforestation may depend on the deforestation scale. In this
study, the enhanced wind speed and TADV should be regarded as the
consequence of large-scale deforestation. However, small-scale defor-
estation favors the generation of mesoscale circulations due to the
higher SHF59,60. Such thermodynamically driven mesoscale circulations
may further regulate the wind and TADV over deforested areas.

Moreover, the model resolution has also been proven to play an
important role in determining the simulated response of mesoscale
circulations to surface perturbations61,62. In particular, the high-
resolution (<4 km) simulation with an explicit treatment of convec-
tion and the coarse-resolution (~10 to ~100 km) simulation with para-
meterized convection can even produce different responses of
mesoscale circulations to the same surface perturbation61. In this study,
only coarse-resolution earth system models are used, and the results
are probably model resolution dependent. Therefore, high-resolution
simulations (e.g., the convection-permitting simulation) are encour-
aged to further investigate the deforestation effect on daily tempera-
ture variability, particularly the effect of small-scale deforestation.

We acknowledge the uncertainty in the mechanisms for the bio-
geophysical effects of deforestation on daily temperature due to the
model output availability. In particular, the effect related to horizontal
near-surface TADV is examined based on limited models. It should be
emphasized that, despite this limitation, the deforestation effect on
daily temperature variability is robust because the simulations and
observations consistently agree on the effect, and the results are
independent of the metrics of the daily temperature variability. Since

Fig. 6 | Potential tree cover changes by the end of the twenty-first century and
their effects on daily temperature variability. a Multimodel mean total tree
fraction differences between the ssp370 and ssp370-ssp126Lu simulations (ssp370-
ssp126Lu minus ssp370) by the end of the twenty-first century (2071–2100).
b–e The biogeophysical effect of potential tree cover changes on day-to-day

temperature variability (DTDT) in b DJF (December, January and February), cMAM
(March, April and May), d JJA (June, July and August), and e SON (September,
October and November). The black dots in b–e denote that all six models agree on
the sign of the DTDT change.
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the daily variables are required to study the daily temperature varia-
bility, we encourage more model groups that contribute to the CMIP6
and LUMIP to report daily output to support further analysis.

Methods
Investigation of the biogeophysical effect of the idealized
deforestation
To obtain the biogeophysical effect of the idealized deforestation, the
piControl simulation of the CMIP644 and the idealized global defor-
estation simulation (deforest-globe) of the LUMIP44 are used.

piControl is a long-term (≥500 years) fully coupled simulation and
serves as the baseline experiment of CMIP6. piControl is representative
of the period prior to the onset of large-scale industrialization, with the
reference year being 1850. Volcanic aerosols are fixed at, as closely as
possible, themean values over the historical period of 1850–2014. Solar
variability is fixed at themean value over the first two solar cycles of the
historical period (e.g., 1850–1873). Anthropogenic forcings, e.g., GHGs,
aerosols, and LULCCs, are fixed at the levels of the year 1850.

deforest-globe is branched from piControl and is an 80-year fully
coupled simulation. In deforest-globe, 20 million km2 of tree cover is
linearly converted to natural grassland cover during the first 50 years.
Deforestation is only performed on the top 30% grid cells with the
highest initial fractional tree cover (determined by piControl). In the
following 30 years, the tree cover is maintained at a constant value to
allow the system to equilibrate. All external forcings except the land
cover are the same as in piControl. While the response of terrestrial
CO2 flux to deforestation is allowed, the atmospheric CO2 concentra-
tion is fixed at the value of piControl. In other words, deforestation-
induced CO2 emissions do not reach the atmosphere. Thus, defor-
estation only influences climate through biogeophysical processes.

The last 30-year (year 51–80) simulations since the branching year
are used for analysis for piControl and deforest-globe. The biogeo-
physical effect of the idealized deforestation is obtained by comparing
the 30-year simulations of deforest-globe and piControl (deforest-
globe minus piControl). By the time of this study, five earth system
models contribute to both the piControl and deforest-globe simula-
tions and provide the required daily 2-meter temperature outputs;
thus, these five models are used (Supplementary Table S1). For each
model, only one member is available for deforest-globe; thus, the
single member of deforest-globe and the corresponding member of
piControl are used for analysis.

The total tree cover change is obtained by subtracting the tree
cover fraction of piControl from the value at year 51 of deforest-globe.
Following the same deforestation protocol of deforest-globe, the
models are required to produce a spatial deforestation signal that, as
closely as possible, replicates that shown in Fig. 1a. Nevertheless, the
models still slightly differ in the tree cover changes at regional scales.
This intermodel consistency is inevitable and can be attributed to the
different initial tree cover fractions and divergent model structures,
e.g., vegetation dynamics45. For themodels incorporating the dynamic
vegetation module, vegetation dynamics are required to be switched
off (if possible) on the deforested grid cells and allowed outside the
deforested grid cells45. The tree cover of EC-Earth3-Veg andUKESM1-0-
LL still evolve during the last 30-year simulation (Fig. 1b) because the
vegetation dynamics are switched on outside the deforested grid cells
for these two models. Nevertheless, the tree cover change is limited
during the last 30-year simulation for these two models.

Investigation of the biogeophysical effect of historical
deforestation
To obtain the biogeophysical effect of deforestation during the his-
torical period, the historical simulation (historical) of CMIP644 and the
historical no land-use simulation (hist-noLu) of LUMIP45 are used.

historical is a fully coupled simulation covering the historical
period of 1850–2014. This simulation is branched from piControl and

is driven by evolving and externally imposed forcings. All natural (e.g.,
volcanic aerosols and solar variability) and anthropogenic (e.g., GHGs,
aerosols, and LULCCs) forcings are included and are largely based on
observations. The historical LULCCs are prescribed by the second
generation of the Land-Use Harmonization dataset63 and include
detailed changes in land cover, land use, and land management.

hist-noLu is the same as historical except with LULCCs fixed at the
levels of the year 1850.Note that the atmosphericCO2 concentration in
hist-noLu is identical to the value in historical. Thus, the biogeophy-
sical effect of historical deforestation is isolated by comparing the last
30-year (1985–2014) simulations of historical and hist-noLu (historical
minus hist-noLu). By the time of this study, nine earth system models
contribute to both the historical and hist-noLu simulations and pro-
vide the required daily 2-meter temperature output; thus, these nine
models are used here (Supplementary Table S1). For each model,
multiple members are available for historical and hist-noLu. To save
computational cost, the first members of historical and hist-noLu are
used for analysis.

The total tree cover change during the historical period is
obtained by subtracting the last 30-year (1985–2014) mean tree cover
fraction of hist-noLu from the corresponding value of historical. Note
that while the historical LULCCs are prescribed by the Land-Use Har-
monization dataset, the implementation of the historical LULCCs
across different models is commonly different (Supplementary Fig. 7),
and this problem has always plagued model intercomparison45. Such
intermodel inconsistency may cause the models to diverge in the
response of daily temperature variability to the historical LULCCs.
Moreover, both tree losses and gains may occur in a region, con-
founding the signals in daily temperature variability arising from forest
losses and gains. However, we identify a large area of forest losses
during the historical period in North America (Fig. 5a). This tree cover
change is considerable, spatially coherent, and of high intermodel
consistency (Supplementary Fig. 7). Therefore, we take North America
as a case study to investigate the response of daily temperature
variability to historical deforestation.

Investigation of the net effect of anthropogenic forcings
Toobtain thenet effect of anthropogenic forcings during the historical
period of 1850–2014, the hist-nat simulation of the Detection and
Attribution Model Intercomparison Project64, as well as the historical,
are used.

hist-nat resembles historical but is forced with only solar and
volcanic forcings from historical. Thus, the net effect of all anthro-
pogenic forcings (GHGs, aerosols, and LULCCs) is isolated by com-
paring the last 30-year (1985–2014) simulations of historical and hist-
nat (historical minus hist-nat). By the time of this study, four earth
system models contribute to both the historical and hist-nat simula-
tions andprovide the required daily 2-meter temperature output; thus,
these four models are used here (Supplementary Table S1). For each
model, multiple members are available for historical and hist-nat.
Similarly, the first members of historical and hist-nat are used for
analysis.

Investigation of the biogeophysical effect of potential
afforestation
To obtain the biogeophysical effect of potential afforestation by the
end of the twenty-first century, the ssp370 simulation of the Scenario
Model Intercomparison Project55 and the ssp370-ssp126Lu simulation
of the LUMIP are used.

ssp370 is a fully coupled simulation covering the future period of
2015–2100 under the SSP3-7.0 scenario. This scenario represents the
medium to high end of the range of future forcing pathways with
substantial LULCCs (in particular global forest losses) and high emis-
sions of near-term climate forcers (namely, tropospheric aerosols,
tropospheric O3 precursors, and CH4). ssp370-ssp126Lu is the same as
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ssp370, but LULCCs are from the SSP1-2.6 scenario. The SSP1-2.6 sce-
nario represents the low end of the range of future forcing pathways
that aim to constrain the globalmean temperature below 2 °Cby 2100.
In contrast to the SSP3-7.0 scenario, there are substantial forest gains
due to afforestation or reforestation for the SSP1-2.6 scenario. The
LULCCs for both SSP1-2.6 and SSP3-7.0 are prescribed by the Land-Use
Harmonization dataset. Note that the atmospheric CO2 concentration
in ssp370 is identical to the value in ssp370-ssp126Lu. Thus, the bio-
geophysical effect of potential afforestation is isolated by comparing
the last 30-year (2071–2100) simulations of ssp370 and ssp370-
ssp126Lu (ssp370-ssp126Lu minus ssp370).

By the time of this study, six earth system models contribute to
both the ssp370 and ssp370-ssp126Lu simulations and provide the
required daily 2-meter temperature output; thus, these six models are
used here (Supplementary Table S1). For each model, only one mem-
ber is available for ssp370-ssp126Lu. Thus, the single member of
ssp370-ssp126Lu and the corresponding member of ssp370 are used
for analysis.

Definitions of the daily temperature variability
To quantify the daily temperature variability, two indices are used: the
DTDT45 and the SDT32. Specifically, DTDT is defined as the mean value
of absolute differences in temperaturebetween every twoneighboring
days during a given time period, expressed as:

DTDT=
1

n� 1

Xn�1

i = 1

∣Ti+ 1 � Ti∣ ð1Þ

where Ti denotes the 2-meter temperature on day i, and n denotes the
total days of the period.

SDT is amore commonly used index toquantify daily temperature
variability and is expressed as:

SDT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i= 1
T *
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r
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where T *
i denotes the 2-meter temperature on day i with the annual

cycle removed.
Note that DTDT and SDT differ in some aspects, although they

both describe daily temperature variability31,37,65. First, SDT is insensi-
tive to the positions of daily temperature anomalies. For example, an
orderly (e.g., 25, 25, 25, 25, 15, 15, 15 and 15 °C) and an oscillatory (e.g.,
25, 15, 25, 15, 25, 15, 25 and 15 °C) time series of daily temperature have
identical SDT values (5.27 °C). However, the temperature changes
between neighboring days can be felt once and seven times in the
orderly and oscillatory series, respectively. Such a difference between
the orderly and oscillatory series can be reflected byDTDT (1.43 versus
10 °C). Second, compared to DTDT, SDT contains variabilities at mul-
tiple time scales andmay be susceptible to low-frequency temperature
variabilities (e.g., weekly variability).

Here, we do not determine which index is better for describing
daily temperature variability. Thus, both DTDT and SDT are used to
quantify daily temperature variability. More importantly, the results
are independent of the metrics of daily temperature variability
(Fig. 1c–f versus Supplementary Fig. 4).

Some models provide the daily 2-meter mean temperature that
can be used to directly calculate DTDT and SDT. A few models, how-
ever, only provide the daily 2-meter maximum and minimum tem-
peratures. For these models, the maximum and minimum
temperatures are averaged to produce the estimate of the mean
temperature, and then the estimate is further used to calculate DTDT
and SDT. The model output variables required to calculate DTDT and
SDT are listed in Supplementary Table S2.

Attribution of the change in daily temperature variability
According to the thermodynamic energy equation54, the temperature
difference (δT) between two neighboring days can be expressed as:

δT =
∂T
∂t

= � V �∇T +
RT
cpP

� ∂T
∂P

 !
ω+

1
cp

∂Q
∂t

ð3Þ

where T is the daily 2-meter temperature (°C), V is the daily 10-meter
vectorwind (m·s−1),∇ is the horizontal divergence operator,R is the gas
constant for dry air (287 J·K−1·kg−1), cp is the specific heat of dry air at
constant pressure (1004 J·K−1·kg−1), P is the atmospheric pressure (Pa),
ω is the daily near-surface vertical velocity (Pa·s−1), and Q is the daily
diabatic heating (J·kg−1).

Substituting Eq. (3) into Eq. (1), Eq. (1) can be rewritten as:
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Then, the deforestation-induced change in DTDT can be expres-
sed as:

ΔDTDT=Δterm1 +Δterm2+Δterm3 ð8Þ

where Δ denotes the difference between the piControl and deforest-
globe simulations (deforest-globe minus piControl) or between the
historical and hist-noLu simulations (historical minus hist-noLu).
Δterm1 denotes the change in the horizontal near-surface TADV.
Δterm2 denotes the change in adiabatic compression and vertical
advection. Δterm2 is commonly negligibly small inmagnitude and can
be reasonably omitted65. Δterm3 denotes the change in the daily
variability of diabatic heating.

For Δterm3, diabatic heating is considered to be determined by
surface SHF because deforestation directly impacts near-surface
temperature mainly through the change in SHF5,6. Strictly speaking,
to calculate Δterm3, the sensible heat absorbed by the 2-meter air
should be used. However, only the total sensible heat that warms the
aboveground air is known. To compromise, we use the total sensible
heat to qualitatively estimate the contribution of Δterm3 to the DTDT
change, expressed as:

Δterm3=Δ
1
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where SHFi denotes the surface SHF on day i. Obviously, Δterm3 is
actually the change in the DTDSHF (see Eq. (1)). It should be empha-
sized that this approach prevents us from showing Δterm3 in a unit
equivalent to ΔDTDT. In other words, Δterm3 (Eq. (9)) can only qua-
litatively explain the DTDT change, e.g., positive Δterm3 leading to
increased DTDT.

In summary, the DTDT response to deforestation can be attrib-
uted to the change in the horizontal near-surface TADV and the change
in the DTDSHF. Note that the effects of changes in albedo, surface
roughness, and evaporation efficiency that may arise from
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deforestation have already been covered by the TADV and DTDSHF
effects. For example, the albedo-driven cooling effect and the
evapotranspiration-driven warming effect determine the surface
temperature change, which directly influences DTDSHF and indirectly
influences the TADV through the modification of the horizontal tem-
perature gradient. The lower surface roughness increases near-surface
wind, favoring the higher TADV. Similarly, the atmospheric
feedbacks66,67 that arise from deforestation to surface temperature
(e.g., cloud formation and downwards radiation) are also implicitly
included in the TADV and DTDSHF effects.

The model output variables required to calculate TADV and
DTDSHF are listed in Supplementary Table S2.

Validation of the model simulation of daily temperature
variability
To validate the model behavior in the simulations of DTDT and SDT,
two independent reanalysis datasets are used: the ERA5 reanalysis46

from the European Center for Medium Weather Forecasting and the
NCEP-DOE AMIP-II reanalysis47 from the National Centers for Envir-
onmental Prediction and National Center for Atmospheric Research.
These two reanalysis datasets can provide reliable observations of
daily temperature variability36 and are widely used in previous
studies36,38. The ERA5 reanalysis provides the global daily mean
2-meter temperature at a horizontal resolution of 0.25° (latitude) ×
0.25° (longitude) since 1950. The NCEP-DOE AMI-II reanalysis pro-
vides global daily mean 2-meter temperature on the T62 Gaussian
grid (192 longitude grids × 94 latitude grids) since 1979.

The 30-year (1985–2014) mean DTDT and SDT from the ERA5
reanalysis (Supplementary Figs. 1i–l and 3i–l) and the NCEP-DOE AMIP-
II reanalysis (Supplementary Figs. 1m–p and 3m–p) are used as the
observational benchmarks. The 30-year (year 51–80) mean DTDT and
SDT simulated by piControl (Supplementary Figs. 1a–d and 3a–d) and
the 30-year mean (1985–2014) DTDT and SDT simulated by historical
(Supplementary Figs. 1e–h and 3e–h) are validated against the reana-
lysis. Note that the anthropogenic forcings for piControl are fixed at
the levels of the year 1850, which are inconsistent with the reanalysis
levels. Thus, there might be larger biases in DTDT and SDT simulated
by piControl than historical.

Validated with the reanalysis, both piControl and historical can
reasonably simulate the global patterns of DTDT and SDT for each
season. Statistically speaking, compared to the ERA5 reanalysis, the
root mean squared error in the simulated DTDT is between 0.17 and
0.35 °C for piControl and between 0.16 and 0.24 °C for historical
across the seasons. When compared to the NCEP-DOE AMIP-II rea-
nalysis, the root mean squared error in DTDT is slightly larger for
both piControl (0.25–0.37 °C across the seasons) and historical
(0.23–0.47 °C across the seasons). In general, the root mean squared
error in the simulated DTDT is highest in winter, followed by spring
and autumn, and lowest in summer. A similar result can be obtained
for the simulated SDT.

Validation of the model representation of the biogeophysical
effect of deforestation on mean surface temperature
To evaluate the model behavior in the representation of the biogeo-
physical effect of deforestation on mean surface temperature, a
dataset48mapping the biophysical effect of vegetation cover change at
the global scale is used. This dataset is establishedbasedon the “space-
for-time” substitution method and multiple satellite observations. We
use the datasetmapping the potential changes in daytime (~13:30 local
time) and nighttime (~01:30 local time) surface temperatures as a
result of a complete transition from forests to grasslands and crop-
lands. The dataset is provided at monthly time steps and a horizontal
resolution of 1° × 1°. The monthly values are averaged over the period
of 2008–2012. The daytime and nighttime values are averaged to
obtain the estimate of the daily mean value.

Compared to the satellite observations, themodels simulatemore
widespread cooling effects in the northern mid-latitudes (Supple-
mentary Fig. 2). It should be emphasized that such discrepancies
cannot be fully attributed to the poor performance of the models.
Instead, this discrepancy largely results from the unfair comparison
between the observed and simulated biogeophysical effects50. Speci-
fically, the observed biogeophysical effect of deforestation is retrieved
based on the “space-for-time” substitution method through the com-
parison of the spatially adjacent forest and openland pixels. Since the
atmosphere is assumed to be largely identical over forest pixels and
neighboring openland pixels, the deforestation-induced atmospheric
feedbacks to surface temperature (e.g., cloud formation and down-
wards radiation)66,67 are not fully considered. Thus, the observed bio-
geophysical effect should be considered largely representative of the
local effect of deforestation15,48. In contrast, the atmospheric feedbacks
to deforestation are fully considered in the coupled models. Thus, the
simulated biogeophysical effect includes both the local and nonlocal
(through atmospheric feedback) effects of deforestation49. It has been
explicitly demonstrated that deforestation causes widespread non-
local cooling effects in the northern mid- to high-latitudes, with mag-
nitudes comparable to or even larger than the local effects49,68. That is
why the simulations indicate a more widespread cooling effect of
deforestation in the northern mid-latitudes than the satellite
observations49,50 (Supplementary Fig. 2). Moreover, the biogeophysical
effect of deforestation also depends on the background climate69,70.
Thus, the cold bias in the simulated biogeophysical effect can also be
partly attributed to the colder background climate of piControl, with
the anthropogenic forcings fixed at the levels of the year 1850.

The paired forest and openland sites
To obtain the observational evidence on the biogeophysical effect
of deforestation on daily temperature variability, the observations
from33flux sites of the FLUXNET2015 Tier 1 dataset51 and 7flux sites
of the AmeriFlux dataset52 are used. These sites are located in North
America and Europe, where the deforestation effect on daily tem-
perature variability is prominent, as suggested by the simulations.
These sites provide gap-filled observations of daily 2-meter air
temperature, 10-meter wind speed, and surface SHF, which are
required in this study. The SHF is observed through the eddy-
covariance method and has been corrected to address the surface
energy imbalance issue.

The land cover types of these 34 sites include forests, grasslands,
croplands, and open shrublands. Following the “space-for-time” sub-
stitution logic, a forest site is paired with a neighboring openland
(grasslands, croplands, and open shrublands) site. To minimize the
influence of the elevation difference between the paired forest and
openland sites on our analysis, the pairs with elevation differences
exceeding 500mare discarded. In total, 24 pairs are available for further
analysis (Supplementary Fig. 5 and Supplementary Table S3). The mean
horizontal distance between the paired sites is 24.6 km, and the
mean elevation difference is 71.7m. The paired sites share almost the
same background atmospheric conditions due to the short horizontal
distance53. Therefore, any differences in the near-surface atmosphere
(e.g., daily temperature variability) between the paired sites can be
mostly attributed to the contrasting land cover types. Again, since
the “space-for-time” substitution method is used, only the local effects
are considered here, whereas the nonlocal effects are mostly not inclu-
ded. For example, the atmosphere above the paired sites tends to be
mixed due to horizontal advection. As a result, the effect related to the
change in horizontal near-surface TADV is weakened in this case.

The Kolmogorov–Smirnov two-sample test
The Kolmogorov–Smirnov two-sample test is a nonparametric test to
determine if two samples of data are from the same continuous
distribution. The null hypothesis is that the two dataset values are
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from the same continuous distribution. The alternative hypothesis is
that these two datasets are from different continuous distributions.
The hypothesis test is carried out at the confidence level of 95%. This
test is performed using MATLAB.

Data availability
The piControl and historical simulations of the CMIP6, the deforest-
globe, hist-noLu and ssp370-ssp126Lu simulations of the LUMIP, the
hist-nat simulation of the Detection and Attribution Model Inter-
comparison Project, and the ssp370 simulation of the Scenario Model
Intercomparison Project are available at https://esgf-node.llnl.gov/
search/cmip6/. The ERA5 reanalysis data are available at https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The NCEP-
DOE AMIP-II reanalysis data are available at https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis2.html. The dataset mapping the bio-
physical effects of vegetation cover changes is available at https://
jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ECOCLIM/Biophysical-
effects-vgt-change/v2.0/.

Code availability
All codes of this study are available at Figshare71.
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