Table 1. Weather Research and Forecasting model setting

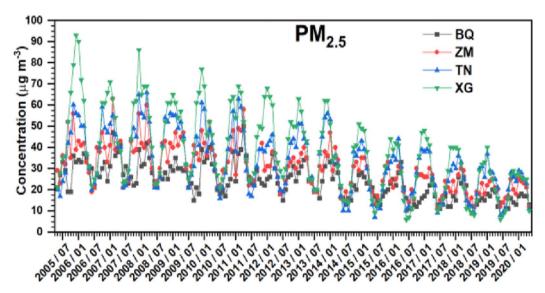

Parameters	WRF Setting		
Version	WRF v3.7.1		
Microphysics	WSM 5-class scheme		
Cumulus Parameterization	Kain-Fritsch		
Planetary Boundary Layer	YSU scheme		
Surface Layer	MM5 Monin-Obukhov scheme		
Land Surface	Unified Noah land-surface model		
Urban Surface	No		
Longwave Radiation	cam scheme		
Shortwave Radiation	cam scheme		
SST_update	Yes		

Table 2. Community Multiscale Air Quality model setting

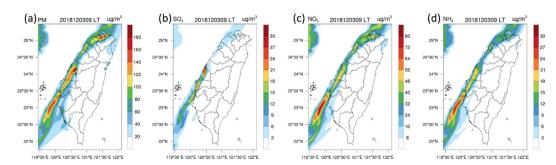

Parameters	CMAQ Setting
Version	CMAQ v5.2.1
Chemical mechanism	Cb06
Horizontal advection	Yamo
Vertical advection	WRF input
Horizontal mixing/diffusion	Multiscale
Aerosol	Aero 6
Cloud option	Acm ae6
Emission	TEDS 9.0

Table 3. Model domain and resolution setting

		Domain 1	Domain 2	Domain 3	Domain 4
WRF	Vertical Layer	45	45	45	45
	Grid Size	91×91	166×169	223×223	223×223
	FDDA	Yes	Yes	Yes	No
CMAQ	Resolution	81 km	27 km	9 km	3 km
	Vertical Layer	6	15	15	15
	Grid Size	70×80	70×80	70×80	90×135

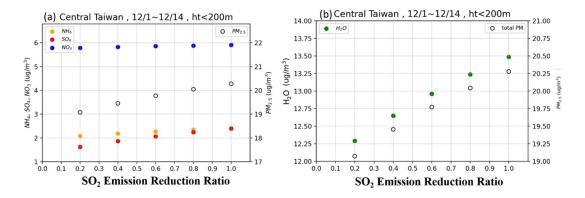
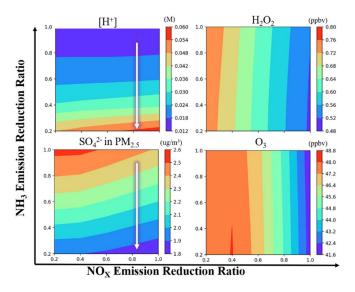


Fig. 1. Long-term trends of PM2.5 and gaseous pollutants monitored at the Banqiao, Zhongming, Tainan, and Xiaogang stations. (Chuang et al., 2021)


Fig. 2. Surface layer concentration in Taiwan of CTL run. Select a representative distribution. (a) the total PM concentration. (b) sulfate (c) nitrate (d) ammonium formation in PM.

PM and its secondary inorganic formations show similar spatial patterns, with the highest concentrations occurring in the western region of Taiwan. This area is characterized by flat terrain, high population density, and intense industrial activities, making it a major residential and industrial agglomeration zone.

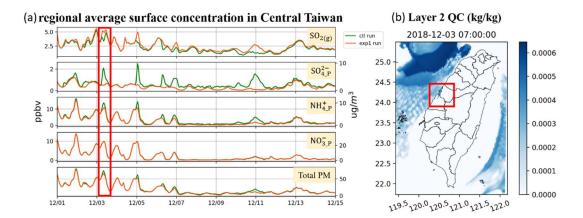


Fig. 3. CTL and EXP2 run (SO₂ emission adjustment experiments). (a) sulfate, nitrate, ammonium formation, and total PM_{2.5} surface layer average concentration in Central Taiwan. (b) liquid water formation and total PM_{2.5} surface layer average concentration in Central Taiwan.

As SO₂ emission reduces, sulfate has the most significant decrease. To maintain the pH balance, ammonium also decreases. The slight change in nitrate is attributed to the decline in sulfate and ammonium, which leads to a reduction in water in PM. As a result, the amount of dissolved nitric acid also decreases.

Fig. 4. CTL run and EXP3 run (NO_X and NH₃ emission reduction separately or simultaneously experiments). Surface layer average concentration of proton in PM_{2.5}, sulfate in PM_{2.5}, gas phase hydrogen peroxide and gas phase ozone in Central Taiwan. The photon and sulfate in PM_{2.5} decrease as the NH₃ emission reduces. But the hydrogen peroxide and ozone do not have the same pattern.

Fig. 5. We select a grid point with both strong aqueous phase chemistry and high cloud water. Specifically, we chose a grid point located on the second layer (approximately 64.54 meters above sea level) in the model, situated on the Taichung coast (120.5053E, 24.203N) at 7:00 am local time on December 3, 2018.