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• Ongoing climate change underlines the urgent need to continue >20 years gravimetry
measurements with enhanced concepts and sensors

• Low-frequency noise of electrostatic accelerometers (EA) - one of the limiting factors in
gravity field recovery (GFR)

• EA are partly responsible for a systematic effect in gravity field solutions (North-South
‘striping’)

• LISA-Pathfinder (LPF) optical accelerometry demonstrated promising results for
gravimetry missions
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Left: Timeline of the gravimetry missions;
Right: Comparison of the ACCs ASD sensitivities for
current instruments and advanced concepts w.r.t.
time-variable gravity signal.

• Mission scenarios were run in eXtended Hybrid simulation Platform for Space systems
(XHPS) in Matlab/Simulink, including simulation of space environment

• Accelerometer Modeling Extended (ACME) is a framework developed in
Matlab/Simulink to model past, current and proposed accelerometers (ACCs)

• Gravity field recovery (GFR) was carried out using QACC and GRADIO software tools

Block diagram of simulation procedure
within the used software parts.

Left: ASD of the SGRS noise budget of the modelled SGRS;
Right: Comparison of the parametrized EAs SGRS ASD sensitivities, non-gravitational accelerations and
inter-satellite LRI & KBR errors.

• Noise budget of the SGRS [Alvarez et al., 2022], modeled in ACME includes: actuation,
capacitive sensing, stiffness, thermal bias and electrostatic noises

Recovered gravity fields (without post-processing and filtering) between simulated GRACE-FO and future
gravimetry mission concepts w.r.t. EIGEN-6c4. Left: Global maps in EWH (m) – up to degree 90;
Right: Averaged error degree variance per specific degree in geoid height (m) – up to degree 180.

GRACE-FO vs. future gravimetry mission concepts
• 1 month mission duration; background models neglected
• h=450 km, non drag-free, i=89°, d=190 km
• By utilizing novel instruments, i.e. enhanced SGRS or LRI it is possible to avoid filtering

or post-processing of the gravity field models from GRACE-like polar pair missions

Future gravimetry mission combination concept:
ll-sst + cross-track gradiometry

• 1 month mission duration; background models neglected
• h=246 km, drag-free, i=89°, d=193 km
• North-South striping effect reduced
• Benefit from advantages of GRACE (temporal grav. signals) and GOCE (static grav.

signals) concepts

Gradiometer model comparison
• Modeled gradiometers show significant improvement w.r.t. GOCE high-sensitive

gradiometer

Left: ASD of the ACCs that built the gradiometers;
Middle: Averaged degree RMS per specific degree in geoid height (m) from different gradiometer models;
Right: Difference of gradiometer solutions from SH degree 8.

Left: Scheme of the combination of the ll-sst and cross-track gradiometry;
Right: Averaged error degree variance per specific degree (m) w.r.t EIGEN-6c4.

• Demonstrated the capability of modeling the full circle of
gravimetry missions

• Showed that modeled ACCs based on SGRS provide similar
performance as the concepts from other research groups

• Modeled ACCs in ACME using a range of parameters
• Applied sensitivity curves derived from SGRS ACME model

into accelerometry software QACC and gradiometry
software GRADIO for gravity field recovery (GFR)

• Compared GFR solutions from the various parametrized
mission scenarios and different gradiometer concepts

1. Current state of gravimetry missions

2. Methods

3. Accelerometer & gradiometer modeling

Left: Illustration of 1 degree of freedom (DOF) accelerometer model;
Right: Scheme of the 1 DOF optical gradiometer.

ACME:
• Simulates the dynamics of ACCs using parametric models
• Includes noise models of sensors (capacitive, optical) and actuators (electrostatic)
EA and optical ACC principles:
• EAs measure the change in capacitance to determine TM displacement
• Optical ACCs assumed to have a better performance by using a laser-based

measurement to exclude the capacitive sensor noise

4. Accelerometer noise budget & parametrization

5. Gravity field recovery – simulations
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Satellite formation: Bender constellation
• 1 month mission duration; background models neglected
• h=450-480 km, non drag-free, i=89°, i=70°, d=190-200 km
• Bender constellation will significantly improve the accuracy of the GFR solutions on

global scale w.r.t. GRACE-FO current outputs

Recovered gravity fields (raw data, without post-processing and filtering) from Bender constellation.
Left: from polar satellite pair; Middle: from inclined orbit;
Right: combination from 2 satellite pairs w.r.t. EGM2008 in terms of EWH.

6. Results


