

Supplementary Materials of EGU23-2239

Ship-related ultrafine particles and SOA formation in a Mediterranean port city

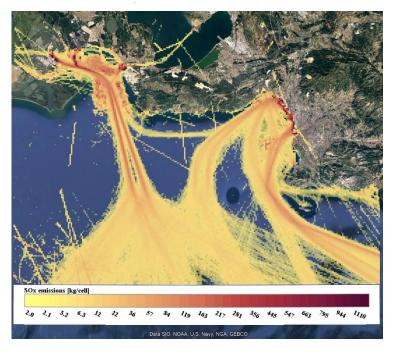
<u>Matthias Karl</u>¹, Martin O.P. Ramacher¹, Sonia Oppo², Ludovic Lanzi², Elisa Majamäki³, Jukka-Pekka Jalkanen³, Grazia M. Lanzafame⁴, Brice Temime-Roussel⁴, Barbara D'Anna⁴

¹ Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany

² Atmosud, Air Quality Observatory in the Provence-Alpes-Côte d'Azur region, 13006 Marseille, France

³ FMI, Finnish Meteorological Institute, FI-00560 Helsinki, Finland

⁴ Aix Marseille Universite, CNRS, LCE, Marseille, France



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

STEAM-3 ship emission of SO_x Marseille 2020

STEAM v3.5

Jalkanen et al., 2012; Johansson et al., 2017

Marseille port inventory Year 2020 Grid resolution: 250 m

AIS data from 2015 as baseline for ship positions

Map: FMI, Elisa Majamäki

STEAM	PIOC	PSOC	XYL	MEK	нсно	СНЗСНО	C4H10	C3H6	C2
VOCA	0.914	0	0	0.011	0	0.021	0	0	0
VOC B	0	0.01	0.074	0	0.473	0.281	0.012	0.05	0.10
VOC C	0.433	0.421	0.146	0	0	0	0	0	0
VOC D	0	0.831	0.169	0	0	0	0	0	0

VOC groups A-D in STEAM-3 have a load dependency of emission factors based on Reichle et al., J. Air Waste Manag. Assoc., 2015; Agrawal et al., J. Geophys. Res., 2010; etc.

Emission size distributions

500

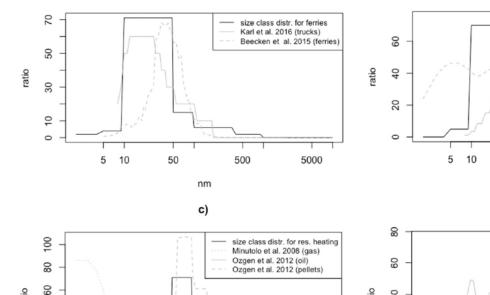
size class distr. for ships

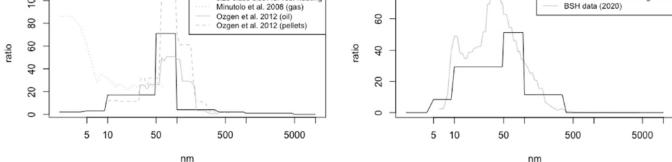
Jonsson et al. 2011 (ships)

5000

size class distr. for background

Karl et al. 2020 (ships)


a)

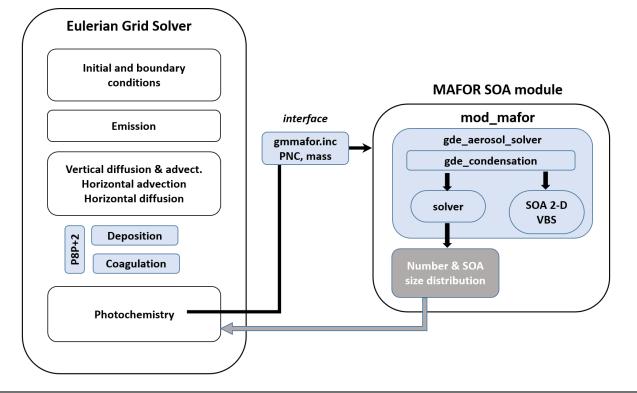

b)

50

nm d)

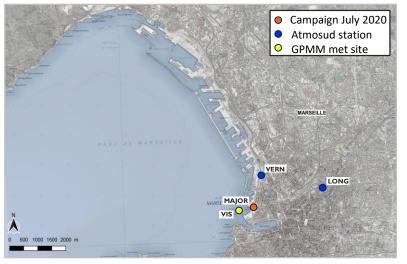
CC BY MDPI, Basel, Switzerland Lauenburg, M., Karl, M., Matthias, V., Quante, M., and M.O.P. Ramacher. (2022) City scale modeling of ultrafine particles in urban areas with special focus on passenger ferryboat emission impact. Toxics, 10, 3.

Particle number parameterization P8P+2

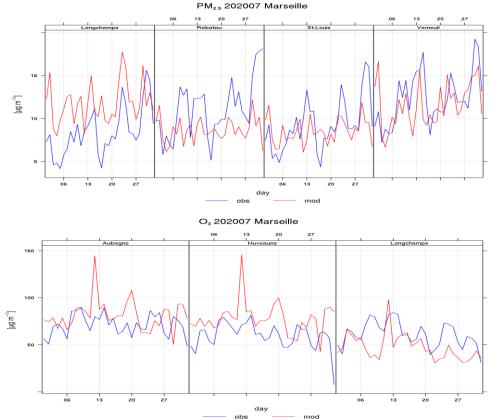

Size classes	Lower Dp (nm)	Upper Dp (nm)	Mean Dp (nm)	Band width (-)	V dep (cm/s)	K coag (cm ³ /s)
PNI	1.5	4.0	2.0	1.3	1.000	6.30x10 ⁻⁹
PN2	4.0	9.0	7.0	1.3	0.528	4.51×10-9
PN3	9.0	21	17	1.5	0.355	9.76×10-9
PN4	21	50	41	1.6	0.181	15.0×10-9
PN5	50	120	98	1.6	0.068	5.40×10-9
PN6	120	290	232	1.8	0.039	6.26x10 ⁻⁹
PN7	290	670	551	1.8	0.031	4.27x10 ⁻⁹
PN8	670	1000	850	1.8	0.023	2.28×10 ⁻⁹
PN9	1000	2500	1500	2.0	0.110	0.87x10 ⁻⁹
PN10	2500	10000	4000	2.0	0.200	0.80×10 ⁻⁹

✓ CHEM

EPISODE-CityChem - SOA formation



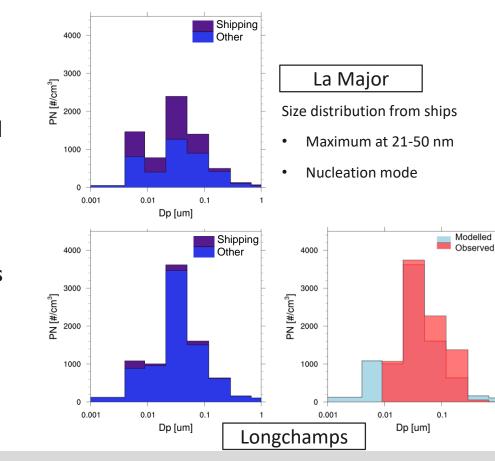
Block structure of the Eulerian grid solver with P8P+2 and the MAFOR SOA module in EPISODE-CityChem



′**▲**CHFM

Comparison to AQ monitoring

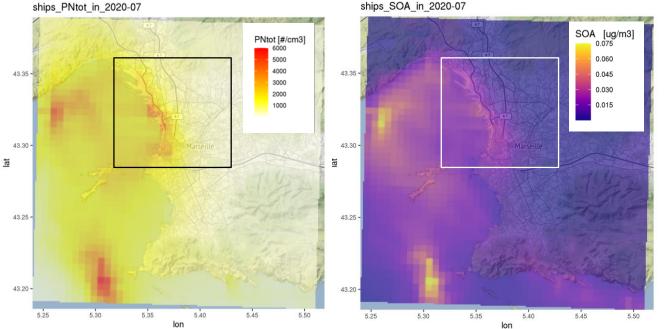
AQ Monitoring Verneuil – urban traffic site Longchamps –urban background



Evaluation of modeled PNSD

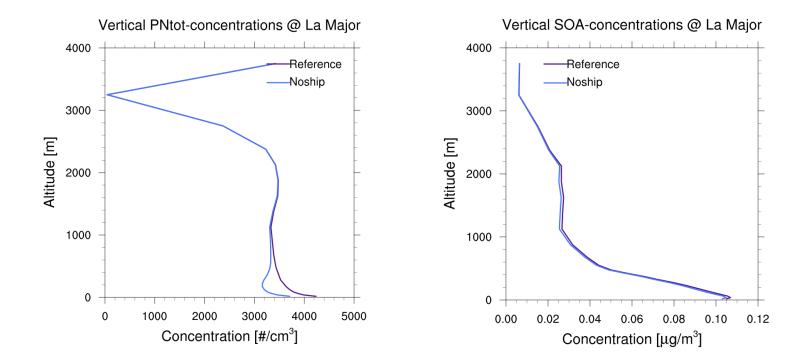
Particle Number Size Distribution (PNSD) La Major – campaign port site Longchamps –urban background

Observed PNSD at Longchamps from AtmoSud Instrument: SMPS (TSI)



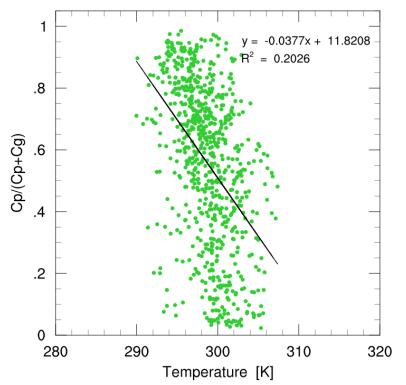
CHEM

- Average July 2020
- Zero-out method $\Delta C(ship)$



Average ship impact: 1100 #/cm³ to UFP, 9.4 ng/m³ to SOA (spatial mean of city box)

Vertical profile of modeled PN and SOA



CHEM

La Major, Average 07/2020

Organic gas-particle partitioning

Temperature dependence of the modelled gas-particle partitioning of semi-volatile organics expressed as:

$$f_{in_particles} = \frac{C_{soc,particle}}{C_{soc,gas} + C_{soc,particle}}$$

La Major, hourly model data 07/2020