

Hybrid-Vlasov simulation of soft X-ray emissions at the Earth's dayside magnetospheric boundaries

M. Grandin¹, H. K. Connor², S. Hoilijoki¹, M. Battarbee¹, Y. Pfau-Kempf¹, U. Ganse¹, K. Papadakis¹, and M. Palmroth^{1,3}

¹University of Helsinki, Helsinki, Finland ²NASA Goddard Space Flight Center, Greenbelt, MD, USA ³Finnish Meteorological Institute, Helsinki, Finland

EGU23, Vienna & online, 24–28 April 2023

Motivation

Two upcoming satellite missions will observe the Earth's plasma environment with soft X-ray imagers: – SMILE (ESA–CAS)

– LEXI (NASA/Boston University)

Since no global images of near-Earth space exist yet, **numerical simulations** are needed to predict the expected science enabled by those missions

Vlasiator 6D run

- Vlasiator: Global hybrid-Vlasov model of near-Earth space
 - Some kinetic processes (e.g. waves) can be studied
- Driving conditions (uniform & constant):
 - Southward IMF, 5 nT
 - $V_{\rm SW}$ = 750 km/s, $n_{\rm SW}$ = 1 cm⁻³, $T_{\rm SW}$ = 500 kK
- Spatial resolution: 8000 to 1000 km
- Key papers:

- Palmroth et al. (2018)

Ganse et al. (2023)

Soft X-ray emissivity calculation

At a given time in the simulation, the local soft X-ray emissivity due to solar wind charge exchange is calculated [in eV cm⁻³ s⁻¹ sr⁻¹] by

Soft X-ray image generation

- We use two virtual imaging spacecraft providing two different views on the dayside magnetosheath and cusps
 - dawnside view (analogous to LEXI): $(0, -30 R_E, 0)$
 - polar view (analogous to SMILE): $(0, 0, 30 R_E)$
- For each local azimuth–elevation pair (image pixel) every 0.33°, we integrate the line-of-sight soft X-ray emissions from the spacecraft until the backwall of the simulation domain $Q_{\rm int}(\varphi,\lambda) = \int Q_{\rm loc}(l_{\varphi,\lambda}) \,\mathrm{d}l_{\varphi,\lambda}$
- We express Q_{loc} in keV cm⁻³ s⁻¹ sr⁻¹ and Q_{int} in keV cm⁻² s⁻¹ sr⁻¹

"Instantaneous" soft X-ray images: from dawn

Time-integrated images: from dawn

- 300 s integration to reflect expected instrument capability
- Three time intervals considered in the simulation
- Brightness differences at the magnetopause, and faint oblique structures in the magnetosheath

• **FTEs** forming at the magnetopause near the subsolar point, propagating towards the cusps

- **FTEs** forming at the magnetopause near the subsolar point, propagating towards the cusps
- **Mirror-mode waves** in the magnetosheath

- **FTEs** forming at the magnetopause near the subsolar point, propagating towards the cusps
- **Mirror-mode waves** in the magnetosheath
- Can these have signatures in timeintegrated soft X-ray images?

Transient signature detection: method

- We take cuts in images and look at the soft X-ray signal along with plasma parameters and the magnetic field
- For FTEs: **B**, n_p , Q_{int} along the magenta cut
 - We search for bipolar signatures in the **B** field component normal to the magnetopause
- For mirror-mode waves: *B*, *n*_p, *Q*_{loc}, *Q*_{int} along the **black** and **grey** cuts
 - We search for anticorrelated signatures in B and n_p

Results (teaser)

- Can FTEs have signatures in time-integrated soft X-ray images?
 - Maybe yes, if there is no strong guide field and plasma density peaks in their core
 - * Collective effect, not individual FTE over 300 s

- Can mirror-mode waves have signatures?
 - * Maybe yes, as a collective effect
 - * Lower relative signal than for FTEs

Discussion & conclusions

- Large-scale features (cusp, magnetosheath, magnetopause) are clearly visible in soft X-rays
- Q_{int} values obtained with Vlasiator are consistent with earlier MHD studies (e.g., Sun et al., 2019; Connor et al., 2021)
- Transient phenomena could lead to soft X-ray signatures:
 - FTEs: if cumulative n_p enhancements locally amount up to ~30%, Q_{int_300s} is increased by ~12% ("crater FTEs"; Zhang et al., 2010)
 - Mirror-mode waves: if cumulative n_p enhancements locally amount up to ~14%, Q_{int_300s} is increased by ~4%
- Note that driving conditions in this run are more representative of high-speed streams (fast, tenuous solar wind) than of typical conditions

Preprint

- Paper accepted for publication as part of the SMILE special section of *Earth and Planetary Physics*
- Preprint available on arXiv: https://arxiv.org/abs/2301.13325

