
1. Introduction
With rapid urbanization and population growth, human habitats suffer from an increased exposure to land-
slide hazards worldwide (Froude & Petley, 2018). This situation tends to become more severe under climate 
change, where extreme rainfall, permafrost thaw, and glacier retreat may promote fatal landslides (Kirschbaum 
et  al.,  2020; Lacroix et  al.,  2022; Patton et  al.,  2021). One of the biggest unknowns in the real-time hazard 
assessment of an ongoing landslide is whether a catastrophic collapse (i.e., a runaway failure) would occur or 
not (Palmer, 2017). Forecasting catastrophic landslides is very challenging, because slope movements are highly 
variable in both space and time, depending on various external drivers and preconditioning factors (Glastonbury 
& Fell,  2008,  2010; Lacroix et  al.,  2020). Existing landslide hazard mitigation strategies relying on empiri-
cally defined alarm thresholds of rainfall intensity and/or landslide velocity (Crosta & Agliardi, 2002; Crosta 
et al., 2017; Krøgli et al., 2018) are plagued by large uncertainties. Although great advances have been made 
over the past decades to develop and deploy high-precision monitoring technologies to observe/detect unstable 
slope movements (Booth et al., 2013; Crosta et al., 2014; Hu et al., 2020; Manconi et al., 2016), only a limited 
number of catastrophic landslides have been successfully predicted. Thus, there is a fundamental need to rapidly 
and reliably forecast catastrophic landslides in real time, so that relevant warnings can be immediately issued to 
mitigate the associated risks.

We propose that a catastrophic landslide tends to manifest itself as being in the “dragon-king” regime—a double 
metaphor for an event of a predominant size/impact (like a “king”) and a unique origin (like a “dragon”) (Sornette 
& Ouillon, 2012). This classification can be justified in the context of classical creep theory (Courtney, 2000), 
where a creeping solid material prior to failure experiences a transition from a secondary or steady-state creep 
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stage (having relatively constant strain rates of low magnitude) to a tertiary or accelerating creep stage (having 
continuously amplified strain rates of large magnitude). The strain rate bursts during the tertiary creep stage 
preceding the failure are dragon-kings, because they are much larger in size than those of the secondary creep 
stage (Main, 2000) and are born of a unique origin (i.e., positive feedback mechanism, where the growth rate of 
the strain rate increases with the strain rate itself) (Sammis & Sornette, 2002). These dragon-kings are expected 
to be “outliers” with statistically different properties compared to their smaller siblings (Sornette, 2002; Sornette 
& Ouillon, 2012), pointing to a possible avenue to predict material failure via dragon-king detection. If there is 
no positive feedback in the tertiary creep process, large strain rates as non-dragon-king outliers could still appear 
but do not lead to a catastrophic failure (Main, 1999).

Building upon this paradigm, we develop a physics-based predictive framework for real-time forecast of cata-
strophic landslides via dragon-king detection. The inputs for our analysis are slope displacement time series that can 
be recorded by various slope monitoring techniques. We first compute slope velocities on a daily basis and describe 
their statistical properties using the inverse gamma distribution with parameters estimated based on the profile like-
lihood method (Text S1 in Supporting Information S1). We use the inverse gamma distribution as a parsimonious 
parameterization that is convenient to capture the coexistence of a power law (for medium/large velocities related 
to short-term intermittent creeps) and a rollover transition (for small velocities related to long-term background 
creeps) in the probability density function (PDF) of slope velocities during the secondary creep stage, as revealed 
by the actual observational data (see Section 2). Other distribution functions with a similar shape may also be used, 
for which the following outlier detection procedures are equally applicable. We then define a null hypothesis H0 that 
all the velocity data are drawn from the same population, whilst the alternative hypothesis H1 states that the largest 
velocities follow a distribution different from that of their smaller siblings. We identify outlier candidates based on 
the Anderson-Darling distance (Text S2 in Supporting Information S1) and further conduct an outward sequential 
test (Text S3 in Supporting Information S1) to exclude spurious outliers at a prescribed significance level α. For the 
remaining outliers, we run a block test (Text S4 in Supporting Information S1) to calculate the p-value under H0, 
and if it is less than α, H0 is rejected, indicating that velocity outliers have emerged and the slope has transitioned 
into a tertiary creep stage undergoing an acceleration crisis. Here, α defines the probability of type I errors (i.e., 
false alarms). Considering the significant consequences of missing true hazards which occurs with probability β, 
where 1 − β is the power of the method, we adopt α = 0.1 as a compromise that allows for a smaller β. This α = 0.1 
is larger than the conventionally used level of 0.05 (a sensitivity analysis is given in Supporting Information S1), 
but this is justified to obtain more power. Finally, we use a phase diagram (Text S5 in Supporting Information S1) 
based on two dimensionless parameters, that is, ω (a smaller ω represents a system which is more heterogeneous/
stochastic) and m (a larger m expresses that the slope acceleration is more nonlinear), to predict whether the slope 
during the acceleration crisis will evolve as a catastrophic landslide or, instead, as a slow landslide with no fail-
ure. Here, the discrimination of catastrophic/slow landslides is based on the presence (for m > 1) or absence (for 
m ≤ 1) of positive feedbacks. In reality, slow landslides may exhibit a wide range of movement rates, from a few 
mm/yr to more than a hundred m/yr (IUGS, 1995; Lacroix et al., 2020). Catastrophic landslides tend to live in the 
dragon-king regime where the slope failure is potentially predictable, which is clearly distinct from a “black-swan” 
regime (Taleb, 2010), where the slope failure is unpredictable and could occur as a surprise (if such events have 
not yet occurred in the record). Below, we demonstrate our method by applying it to three representative historical 
landslide events at Preonzo (Switzerland), Veslemannen (Norway), and Moosfluh (Switzerland).

2. Landslide Data Sets and Forecast Analysis
2.1. Preonzo Landslide, Switzerland

The Preonzo landslide is located at Alpe di Roscioro, above the village of Preonzo in the Riviera valley of 
southern Switzerland (Figure 1a). This instability complex, composed mainly of augen gneiss, has retrogres-
sively experienced several failures since the 18th century (Gschwind et al., 2019). The collapse in February 1702 
destroyed the church of the ancient village of Preonzo below the slope; in May 2002, ∼120,000 m 3 of rocks at the 
southern sector was released; in May 2010, ∼20,000 m 3 of rocks at the northern sector detached from the slope; 
in May 2012, a suspended large volume of ∼210,000 m 3 failed catastrophically. Our investigation is focused on 
the most recent 2012 event.

Since this active landslide imposed a significant hazard to the important industrial facilities and transport routes 
located directly at the toe of the slope, a long-term monitoring campaign was implemented (Loew et al., 2017). 
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In 1999, five extensometers (with a measurement accuracy of at least 0.01 mm) were installed to measure the 
opening of tension cracks in the headscarp area (Figure 1a). In 2010, a robotic total station was installed at 
the valley floor to measure the slope surface displacement via 14 reflectors (with a measurement accuracy of 
∼0.6 mm) (Figure 1a). Figure 1b shows the slope displacement time series recorded by the five extensometers and 
seven of the reflectors (other reflectors were either lost much earlier than the 2012 event or located outside the 
failure area with no relevant response). In summer 2010, an early warning system was implemented to mitigate 
the risk of slope failure, with velocity threshold-based intervention criteria defined for pre-alarm, public alarm, 
and evacuation (Loew et al., 2017). On 24 April 2012, a pre-alarm was released, and on 3 May, the industrial 

Figure 1. Measurement data and forecast analysis of the 2012 Preonzo landslide, Switzerland. (a) Overview of the slope with the monitoring system and headscarps 
indicated. (b) Slope displacement time series recorded by extensometers and reflectors (inset: daily velocities for the last 3 weeks before the failure). (c) Probability 
density function of daily velocities available until 15 May 2012 (inset: 24 April 2012), fitted to the inverse gamma distribution for the extensometer and reflector data, 
respectively (with outliers excluded). (d) Temporal evolution of p-values (the dashed line corresponds to a significance level of 0.1).
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facilities were evacuated. The landslide significantly accelerated after heavy 
rainfalls on 5–6 May (Figure 1b, insets). Then, the slope velocity reduced and 
workers resumed to work in the industrial facilities on 7–11 May. However, 
on 10–11 May, the slope started to accelerate again under no rainfall condi-
tions. Finally, a public alarm was released with the cantonal road closed on 
12 May and the transnational highway closed on 14 May, just before the slope 
failure on 15 May. This is one of the rare cases where early warning and inter-
vention criteria worked successfully, but the decision-making authority was 
confronted with large uncertainties when interpreting available displacement 
data.

We revisit this event using our forecast method. Figure 1c gives the PDF of daily 
velocities derived from extensometer and reflector measurements until 15 May 
2012 (inset shows the PDF of velocity data available until 24 April). We plot the 
individual PDF for each instrument as well as the overall PDF for all the exten-
someters/reflectors. The velocities below ∼0.01 m/day tend to obey an inverse 
gamma distribution, whereas those above this threshold seem to not belong to 
the same population. These large velocities only appeared in the last 3 weeks 
before the failure (Figure 1c and Figure S1 in Supporting Information S1). We 
perform statistical tests to rigorously determine whether velocity outliers exist 
and, if so, when they can be detected. We conduct pseudo-prospective predic-
tions, assuming we are on any day before the failure and only the data recorded 
until that day are known. We define H0 that the velocity data follow an inverse 
gamma distribution. We determine  the  transition velocity, above which veloc-
ities are outlier candidates (Figure S2 in Supporting Information S1). We then 
exclude spurious outliers and calculate the individual/overall p-values under H0 
for the period between 24 April and 15 May 2012 (Figure 1d). The systematic 
declines of all p-values suggest that outliers have emerged since H0 becomes 
less and less likely as p-values decrease. Different instruments sensed outliers 

at different stages, probably due to variations in slope topography/kinematics (Gschwind et al., 2019). In general, 
the instruments installed at the northern sector could detect outliers earlier than those at the southern sector, consist-
ent with the landslide kinematic before failure (Gschwind et al., 2019; Loew et al., 2017). Reflectors identified 
outliers earlier than extensometers, possibly because reflector measurements represent the absolute displacements 
including internal deformations developed downslope of the headscarp. We consider the slope has entered a crisis 
(a tertiary creep stage) when the overall p-value drops below α. At α = 0.1, we could confirm the crisis on 7 and 
11 May based on the overall p-values of extensometers and reflectors, respectively (Figure 1d and Movie S1). We 
then analyze the landslide evolution during the crisis by plotting the ω-m trajectories of this landslide in the phase 
diagram, which indicates that the outliers detected by reflectors were dragon-kings from the start, while those by 
extensometers also evolved into dragon-kings (Figure 2 and Movie S1). With this information, the resumption of the 
activities of the industrial facilities on 7–11 May may be considered to have subjected them to high risk. After 12 
May, all individual p-values had considerably decreased, and on 14 May most of them (except that of E1) dropped 
below 0.1 (Figure 2 and Movie S1), suggesting that the dragon-kings became very mature and the slope was likely 
to collapse soon, consistent with the actual failure on 15 May. Being clearly in the dragon-king regime in the phase 
diagram (Figure 2), the ω-m footprint confirms the high predictability of this slope failure. Interestingly, the ω-m 
trajectories derived from extensometers and reflectors started from very different initial positions but converged 
with the approach to failure, implying that the movements of the sliding mass became more uniform prior to the 
collapse. Our results are compatible with the previous decisions (Loew et al., 2017) of closing the cantonal road on 
12 May and the transnational highway on 14 May. Although the conventional velocity threshold-based approach 
performed almost equally well as our method for the Preonzo landslide (because large velocities only appeared close 
to failure), it could be problematic for other cases (see below).

2.2. Veslemannen Landslide, Norway

The Veslemannen landslide is situated on a north-facing slope at Romsdalen, western Norway (Figure 3a) and 
is part of a dormant deep-seated gravitational mountain slope deformation. This currently active slope sector 

Figure 2. Phase diagram of landslide evolution during the slope acceleration 
crisis. The ω-m parameter pair of each landslide is indicated by the 
corresponding marker with the dotted trajectory illustrating the ω-m footprint 
(see Movies S1, S2, and S3 for animation and Figures S6 and S7 in Supporting 
Information S1 for time periods). Each marker position represents the state of 
the landslide at the end of the time series.
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Figure 3. Measurement data and forecast analysis of the Veslemannen landslide, Norway. (a) Overview of the slope with the monitoring system and instability 
boundary indicated. (b) Slope displacement time series recorded by seven radar points (inset: daily velocities for the last 3 months before the failure). (c) Probability 
density functions of daily velocities available until 31 October 2018 (inset: 1 July 2018) and 5 September 2019 (inset: 1 June 2019), respectively, fitted to the inverse 
gamma distribution (with outliers excluded). (d) Temporal evolution of p-values (the dashed line corresponds to a significance level of 0.1).
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consisting of high-grade metamorphic rocks is subject to sporadic mountain permafrost and deep seasonal frost 
(Magnin et al., 2019). Due to the high risk of slope collapse, a monitoring system with multiple surface and 
borehole-based instrumentations was initiated in 2009. Since October 2014, a ground-based interferometric 
synthetic-aperture radar system (with a measurement accuracy of 0.5 mm) has been installed in the valley floor as 
a key component of an early warning system to continuously monitor the entire unstable slope surface (Kristensen 
et al., 2021). Figure 3b shows the displacement time series recorded at seven radar points (see Figure 3a for their 
locations) over a 5-year period. The slope movements mainly occurred in summer/autumn seasons (possibly 
because the frozen layer thawed to permit rainwater infiltration deep into the slope) (Kristensen et al., 2021) 
and became increasingly large especially after 2017. On 5 September 2019, ∼54,000 m 3 of suspended rocks 
collapsed catastrophically. Prior to the failure, the landslide had cumulatively displaced about 19 and 4 m in 
the upper and lower regions, respectively. The Norwegian Water Resources and Energy Directorate adopted 
a color-coded hazard assessment system (green, yellow, orange, and red) for risk management and mitigation 
(Krøgli et al., 2018). Hazard levels were determined according to annually adjusted velocity thresholds for differ-
ent slope compartments (Kristensen et al., 2021). An evacuation of the risk zone was defined for red levels. In 
total, 16 red alarms were released: 1 in 2014, 1 in 2015, 1 in 2016, 2 in 2017, 6 in 2018, and 5 in 2019. Only after 
the last one, the slope failed, meaning that following the preceding 15 alarms, the population was evacuated but 
no collapse happened.

We use our method to analyze the Veslemannen landslide. Figure 3c gives the PDF of daily velocities derived 
from the radar displacement data. This landslide had already accommodated some large velocities exceeding 
0.5 m/day in 2018 (Figure S1 in Supporting Information S1). However, these large velocities tend to follow the 
same inverse gamma distribution as smaller ones. In the 2019 PDF, some deviation seems to have appeared. 
To rigorously detect velocity outliers, we first determine the transition velocity (Figure S3 in Supporting Infor-
mation  S1) and then calculate the p-values under H0 for the period between July 2018 and September 2019 
(Figure 3d and Movie S2; the p-values before July 2018 are all unity, meaning that H0 is not rejected). In Septem-
ber and October 2018, only a few radar points (e.g., P1 and P2 in the upper region) temporarily exhibited drops 
in p-values, while most other points had no p-value response. In November 2018, the individual p-values of three 
radar points (P1-P3) and the overall p-value showed clear declines, but only P1 had its p-value below 0.1 (even 
if the slope has entered a crisis, the phase diagram analysis indicates that it is in the slow landslide regime; see 
Movie S2). It is only from mid-August 2019 that most radar points started to show p-value declines, and the 
overall p-value stayed close to zero. On 2 September 2019, all individual p-values began to drop substantially. 
This observation, in conjunction with the phase diagram analysis showing that this landslide has evolved into 
the dragon-king regime (Figure 2 and Movie S2), suggests that the slope was likely to collapse, in agreement 
with the catastrophic failure 3 days after. The ω-m footprint of the Veslemannen landslide close to the boundary 
between the black-swan and dragon-king regimes (Figure 2) explains the difficulty in predicting the failure of 
this landslide. However, it is noteworthy that, compared with the 15 false alarms by the system of the Norwegian 
Water Resources and Energy Directorate, our method would have correctly predicted the failure while giving at 
most 1 false alarm (if a majority rule is adopted when analyzing the p-value responses of the seven radar points), 
or none (if a strict rule is adopted requiring all the seven radar points to show a p-value decline), depending on 
the decision process associated with the p-value evolution and phase diagram analysis.

2.3. Moosfluh Landslide, Switzerland

The Moosfluh landslide, also consisting of high-grade metamorphic rocks, is located at the tongue of the Great 
Aletsch Glacier, southern Switzerland (Figure 4a). This landslide with a volume of ∼75 million m 3 is charac-
terized as a deep-seated gravitational mountain slope deformation (mainly controlled by deep toppling) (Glueer 
et al., 2020) and responds to an ongoing glacial retreat (Kos et al., 2016). It had a displacement rate less than 5 cm/
yr before 2005, but started to accelerate after 2005 with a rate exceeding 0.5 m/yr in 2012 (Glueer et al., 2020; 
Kos et al., 2016). In 2013, a comprehensive monitoring system including 2 robotic total stations and about 30 
reflectors was implemented to continuously monitor the slope surface displacement (Glueer et al., 2019). On 21 
September 2016, the central sector of this landslide accelerated dramatically, starting from the glacier-covered 
toe and propagating toward the crest (Glueer et al., 2019). This dramatic acceleration could be explained by the 
formation of three secondary compound sliding surfaces within the toppling slope (Glueer et al., 2019). Four 
reflectors within the activated area (Figure 4a) recorded this acceleration (Figure 4b). Reflector R34 in the toe 
region witnessed a displacement of ∼1.6  m within a week and then was lost on 29 September, while three 
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other  reflectors (R32, R35, and R36) survived. The lowermost secondary slide continued to substantially displace 
until today, but the middle and upper ones strongly decelerated until summer 2017 and move today again with a 
velocity of ∼1 mm/day. This slope so far has experienced a maximum displacement of more than 100 m without 
failure, which may be attributed to the retreating but persistent buttress offered by the viscous glacier at the toe 
of the slope (Storni et al., 2020).

We analyze the 2016 Moosfluh landslide using our method. Figure 4c gives the velocity PDF derived from the 
displacement data by 31 October 2016. Small velocities obey an inverse gamma distribution, while large ones 
tend to follow a different distribution. Those large velocities only emerged in September and October 2016 
(Figure 4c inset and Figure S1 in Supporting Information S1). To rigorously detect velocity outliers, we first 
determine the transition velocity (Figure S4 in Supporting Information S1) and then calculate the p-values under 
H0 for the period between 1 September and 31 October 2016 (Figure 4d and Movie S3). The systematic p-value 
declines qualify the emergence of outliers, whose significance is compatible with the ω-m path staying far away 
from the black-swan regime in the phase diagram (Figure 2). The phase diagram analysis further indicates that 
this slope had a strong potential of catastrophic failure at the beginning of the crisis (from 24 September to 5 
October), but later evolved back into the slow landslide regime (Figure 2 and Movie S3), consistent with the 
observation that this slope did not collapse and continued to deform gradually.

Figure 4. Measurement data and forecast analysis of the Moosfluh landslide, Switzerland. (a) Overview of the slope with the monitoring system and instability 
boundary indicated. (b) Slope displacement time series recorded by four reflectors (inset: daily velocities for the period of the 2016 crisis). (c) Probability density 
function of daily velocities available until 31 October 2016 (inset: 1 September 2016), fitted to the inverse gamma distribution (with outliers excluded). (d) Temporal 
evolution of p-values (the dashed line corresponds to a significance level of 0.1).
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3. Discussion
For the three historical landslides, we also show the results for a significance level α of 0.05 (Figure S8 in 
Supporting Information S1) and those using different outlier test statistics (Texts S3 and S4 and Figure S9 in 
Supporting Information S1); no fundamental difference is observed. Furthermore, we have tested our method 
using realistic synthetic slope velocity data sets (Text S6 and Figures S10–S13 in Supporting Information S1). 
These results indicate that our method is robust and has a strong outlier detection capability (without producing 
type II errors in the tested cases, i.e., empirically β = 0, corresponding to the maximum possible power of the 
method, given the possible uncertainty of the prior null distribution). Our forecast method is superior to the 
conventional velocity threshold approach (Crosta & Agliardi, 2002), because it uses the information embedded 
in the evolution of the full velocity distribution rather than pointwise velocity magnitude changes to qualify the 
landslide crisis. It is worth emphasizing that it is important to detect the secondary-to-tertiary creep transition 
first (e.g., by using our outlier detection algorithm), before conducting the phase diagram analysis that is only 
applicable when the slope has entered the tertiary creep stage. Our method also provides a dynamic perspective to 
quantitatively diagnose the landslide state and adaptively predict its possible subsequent development, such that 
it could robustly eliminate many of the false alarms given by the conventional approach with a fixed viewpoint. 
Additionally, our method provides diagnostics of the limits of predictability by characterizing the detectability of 
dragon-kings against black-swans.

Our research sheds light on one of the biggest questions in landslide hazard assessments (Palmer, 2017): Would 
an active landslide slowly move or catastrophically fail in the future? Here, we have articulated this question using 
the dragon-king paradigm (Sornette, 2002; Sornette & Ouillon, 2012), where a catastrophic failure is character-
ized by dragon-kings mechanistically arising from positive feedbacks during the landslide process. Such positive 
feedbacks may be related to the velocity-weakening frictional behavior (Handwerger et al., 2016; Helmstetter 
et al., 2004) and/or compaction-induced pore pressure buildup (Iverson, 2005) of basal shear zones as well as 
the stress corrosion cracking (Sammis & Sornette, 2002) of rock bridges. To apply our method to real-time fore-
casts, great attention is needed when estimating some of the essential parameters like m, which may be subject 
to uncertainties due to the intrinsic fluctuations of real data. Different techniques (Cornelius & Voight, 1995) are 
available to reduce the uncertainty. We do not claim that our method provides predictive tools for all landslides 
under all circumstances, but the results presented here suggest that adding it to existing early warning systems of 
landslides will bring significant value.

Data Availability Statement
The slope displacement monitoring data of the Preonzo landslide can be found in Data Set S1 or accessible from 
the ETH Zürich Research Collection (https://doi.org/10.3929/ethz-b-000600495). The slope displacement moni-
toring data of the Veslemannen landslide can be downloaded from the supplementary information of the paper 
by Kristensen et  al.  (2021) published in Landslides (https://doi.org/10.1007/s10346-020-01609-x). The slope 
displacement monitoring data of the Moosfluh landslide are accessible from the ETH Zürich Research Collection 
(https://www.research-collection.ethz.ch/handle/20.500.11850/358779).
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Introduction 

This document provides supporting information to complement the theory, analysis, results, and 

discussions in the main Letter. Text S1 presents the mathematical formulation of the inverse gamma 

distribution and its parameter estimation based on the maximum likelihood estimation method. 

Text S2-S4 gives the details of our outlier detection procedures, including the determination of the 

transition velocity for identifying outlier candidates, an outward sequential test for excluding 

spurious candidates, and a block test of the significance of remaining multiple outliers. Text S5 

describes the derivation of the phase diagram characterizing landslide evolution. Text S6 gives an 

examination of our forecast method based on synthetic slope velocity datasets. Figure S1 gives the 

time series of daily slope velocities for the three historical landslides (Preonzo, Veslemannen, and 

Moosfluh). Figures S2-S4 show the probability density functions of daily velocities of the three 

historical landslides on different selected dates as well as the results of transition velocity 

determination. Figure S5 illustrates the determination of parameter m for the three historical 

landslides via least square fitting on the bi-logarithmic plot of slope acceleration versus slope 

velocity. Figures S6 and S7 show the temporal evolution of parameters m and ω, respectively, for 

the three historical landslides. Figure S8 shows the temporal evolutions of p-values calculated for 

the three historical landslides with a predefined significance level α of 0.05, while Figure S9 gives 

those calculated using the classical test statistics. Figures S10-S13 shows the results of examining 

our forecast method based on synthetic slope velocity datasets. Dataset S1 gives the slope 

displacement monitoring data of the Preonzo landslide. Movies S1-S3 show the pseudo-prospective 

forecast analyses of the Preonzo, Veslemannen, and Moosfluh landslides.  
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Text S1. Inverse gamma distribution and its parameter estimation. 

The probability density function of the three-parameter inverse gamma distribution (Forbes 

et al., 2011; Malamud et al., 2004) is written as: 

( )
( )

1
1

; , , exp

+

   
= −   
 − −   

bba a
p v a b c

b v c v c
, (S1) 

where v is the slope velocity, a is a scale parameter, b is a shape parameter, c is a constant, and Γ(·) 

is the gamma function. The parameters need to meet the conditions of a > 0, b > 0, and c < v. The 

inverse gamma distribution has an exponential rollover with an essential singularity for small v 

values and a power law decay (with an exponent of b+1) for medium and large v values, which 

may be related to the so-called long-term background and short-term intermittent slope creeps 

(Crosta & Agliardi, 2002), respectively. The rollover may also be attributed to the resolution limit 

of in-situ measurements that cannot completely detect all the small velocities. In the Letter, we use 

the inverse gamma distribution as a parsimonious parameterization that is convenient to capture 

the coexistence of a power law (for medium/large velocities) and a rollover transition (for small 

velocities) in the probability density distribution of slope velocities during the pre-crisis stage (i.e., 

the slope secondary creep stage). Some other distribution functions with a similar shape may also 

be used to fit the data, for which our dragon-king detection algorithm is considered to be equally 

applicable. 

For N given measurements of the observable, V = {v1, v2, …, vN}, we may rank them in an 

ascending order as V = {v(1) ≤ v(2) ≤ … ≤ v(N)}. If we want to estimate a, b, and c from a subset v = 

{v(1) ≤ v(2) ≤ … ≤ v(n)}V, n ≤ N, we construct the likelihood function as: 
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and further write the log-likelihood function as: 
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The goal is to find the parameter values that maximize this log-likelihood function, i.e.: 

, ,

ˆˆ ˆ[ , , ] arg max ( , , ; )=
a b c

a b c l a b c v , (S4) 

which is however nontrivial due to its strong nonlinearity. To circumvent this issue, we use the 

profile likelihood method (Barndorff-Nielsen & Cox, 1994) with a and b treated as nuisance 

parameters, such that the profile log-likelihood is defined as: 

p
, |

ˆˆ( ; ) max ( , , ; ) ( , , ; )= =
a b c

l c l a b c l a b cv v v , with 
, |

ˆˆ[ , ] arg max ( , , ; )=
a b c

a b l a b c v . (S5) 

We conduct a grid search over a series of fixed values of c within a plausible range, e.g., [–vmax, 

vmin), where vmax and vmin are the maximum and minimum values in v, respectively. To reduce the 

computational cost, the search starts with a coarse grid, which is adaptively refined locally around 

the maximum. For each fixed value of c, we estimate a and b by constraining ∂l/∂a = ∂l/∂b = 0, 

which leads to: 

1

ˆ 1
0

ˆ =

− =
−


n

i i

nb

a v c
, (S6a) 

1

ˆˆln ( ) ln( ) 0
=

− − − =
n

i

i

n a n b v c , (S6b) 

where ψ(·) is the digamma function. The equations above can be further reduced to: 

1 1

1 1ˆ ˆ ˆ( ) ln ln ln ( ) ln( ) 0
= =

= + − − − − =
−

 
n n

i

i ii

g b n b b v c
v c n

 , (S7) 
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and solved using the Newton-Raphson method (Süli & Mayers, 2003) with an initial guess for b 

determined by the method of moments (Forbes et al., 2011) as [μ(v–c)/σ(v–c)]2+2, where μ(·) and 

σ(·) denote the mean and standard deviation. Finally, we obtain the estimate for c from: 

p
ˆ arg max ( ; )=

c

c l c v . (S8) 

Text S2. Determination of the transition velocity. 

The transition velocity ξ is defined as the threshold above which velocities tend to deviate 

from the inverse gamma distribution and are considered as outlier candidates. It is used to find the 

maximum number of possible outliers rather than firmly identify the true outliers, which is the task 

of the outward sequential test described in the next section. We use the Anderson-Darling distance, 

which emphasizes more the tail of a distribution compared to other distance metrics (Malevergne 

& Sornette, 2006), to characterize the deviation of velocity data from the inverse gamma 

distribution: 

2

( ) ( )

1

( ; ) 2 { ln[ ( )] (1 ) ln[1 ( )]}
=

= − − + − −
n

i i i i

i

A n w F v w F v v , 

with 
(1) (2) ( ){ ... }=    nv v vv V , 

( ) nv  , and n N , (S9) 

where wi = 2i/(2n+1) and F(·) is the cumulative distribution function of the inverse gamma 

distribution. The transition velocity is therefore estimated from: 
2ˆ arg min ( ; )= A



  v . (S10) 

In our forecast analysis, we determine the transition velocity based on the velocity data V that 

are only available until the day of making the forecast. In Figs. S1-S3, we show the determined 

transition velocity for the three historical landslides (Preonzo, Veslemannen, and Moosfluh) at 

different selected dates, with the insets plotting A2 as a function of ξ. 

Text S3. Outward sequential test for outlier diagnosis. 

An outward sequential test is used to diagnose the outlier candidates (identified as the velocity 

values beyond the transition velocity) in order to exclude spurious ones. The testing procedures are 

as follows. For the ranked N measurements V = {v(1) ≤ v(2) ≤ … ≤ v(N)}, we specify the number of 

outlier candidates k according to v(N–k) ≤ ξ < v(N–k+1), where ξ is the transition velocity (defined in 

the previous section). Thus, the subset of V denoted as v* = {v(N–k+1) ≤ v(N–k+2) ≤ … ≤ v(N)} contains 

all the outlier candidates. We start with testing if the kth largest candidate v(N–k+1) is an outlier by 

deleting the other k–1 largest ones. If the null is rejected, k outliers are declared; otherwise, the (k–

1)th largest candidate v(N–k+2) is tested and so on. This “outward” sequential procedure of testing 

increasingly larger outlier candidates, v(j) with j = N–k+1, N–k+2, …, N, stops as soon as a null is 

rejected. If none of the nulls are rejected, no outlier is detected. The outward sequential test is 

effective in minimizing the masking and swamping errors (Kimber, 1982; Lin & Balakrishnan, 

2014; Wheatley & Sornette, 2015). 

Our outward sequential test is based on the so-called max-robust-sum (MRS) statistic defined 

for the jth outlier candidate as (Wheatley & Sornette, 2015): 

( )MRS

,

( )

1

−

=

=



j

j k N k

i

i

v
T

v

, (S11) 

which has an improved performance (because no outlier candidate contaminates the denominator) 

compared to the classical max-sum (MS) statistic defined as (Kimber, 1982): 
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( )MS

( )

1=

=



j

j j

i

i

v
T

v

. (S12) 

The results based on the MRS statistic are shown in the Letter, while those based on the MS 

statistic are presented in Figure S8. For a prescribed significance level α, we determine the 

corresponding critical value through Monte Carlo simulations (10,000 runs) of the null (i.e., inverse 

gamma distribution) with parameters estimated from the subset excluding outlier candidates, i.e., 

V–v* = {v(1) ≤ v(2) ≤ … ≤ v(N–k)}. If the test statistic derived from the actual measurement data 

exceeds the critical value, the null is rejected. The analysis in the Letter is for α = 0.1, while an 

additional analysis for α = 0.05 is given in Figure S7. 

Text S4. Block test of multiple outliers. 

To quantify the significance of outliers, we further conduct a block test (Hawkins, 1980) on 

the r remaining outliers v** = {v(N–r+1) ≤ v(N–r+2) ≤ … ≤ v(N)}, 0 ≤ r ≤ k (with spurious ones excluded 

from the outlier candidate list) under the null hypothesis H0 that all the N measurements in V are 

drawn from the same population. Our block test is based on the so-called sum-robust-sum test 

statistic (SRS) defined for the r candidate outliers as (Wheatley et al., 2017; Wheatley & Sornette, 

2015): 

( )
SRS 1

( )

1

= − +

−

=

=




N

i

i N r
r N r

i

i

v

T

v

, (S13) 

which has an improved performance (because the outliers do not contaminate the denominator) 

compared to the classical sum-sum (SS) statistic defined as (Chikkagoudar & Kunchur, 1983): 

( )
SS 1

( )

1

= − +

=

=




N

i

i N r
r N

i

i

v

T

v

. (S14) 

The results based on the SRS statistic are shown in the Letter, while those based on the SS 

statistic are given in Figure S8. To compute the p-value for the null hypothesis H0, we first perform 

Monte Carlo simulation experiments to generate a large number of realizations drawn from the null 

(i.e., inverse gamma distribution) with parameters estimated from V–v** = {v(1) ≤ v(2) ≤ … ≤ v(N–r)}. 

Then, the p-value is determined as the proportion of the realizations having a test statistic larger 

than that calculated from the actual measurement data. The number of Monte Carlo realizations is 

set as 10,000 in order to have the calculated p-value being accurate to at least 2 decimal digits 

(Clauset et al., 2009). If the calculated p-value is less than the significance level α, the null is 

rejected; otherwise, we cannot reject the null. The analysis in the Letter is for α = 0.1, while an 

additional analysis for α = 0.05 is given in Figure S7 (note that there are some subtle differences 

between the p-values for α = 0.1 and those for α = 0.05, since different r numbers of outliers might 

be determined from the outward sequential test at the different α levels, leading to different p-values 

calculated from the block test). 

Text S5. Phase diagram of landslide evolution. 

If the null is rejected in the block test (i.e., the presence of outliers is significant), we further 

analyze the landslide evolution and failure potential using a phase diagram constructed on the ω-m 

plane. The definitions and derivations of the dimensionless parameters ω and m are elaborated 

below. 
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The slope acceleration behavior during a crisis (i.e., tertiary creep stage) can often be 

phenomenologically described by the following nonlinear dynamic equation (Bell, 2018; Bell et 

al., 2011; Crosta & Agliardi, 2002; Kilburn & Voight, 1998; Sammis & Sornette, 2002; Voight, 

1989): 

0 0

 
=  
 

m

v v

v v
, (S15) 

where v is the slope velocity, v̇ is the slope acceleration, v0 and v̇0 are the onset velocity and onset 

acceleration, respectively, at the starting time t0 of the slope acceleration crisis, and m is an 

exponent defining the degree of nonlinearity. The solution to the above equation is given by 

(Voight, 1989): 

( )0
0 0

0

exp
 

= − 
 

m

v
v v t t

v
, for m = 1, (S16a) 

or 

( )( )
( )1/ 1

10
0 0

0

1

−

− 
= − − + 
 

m

m

m

v
v m t t v

v
, for m ≠ 1, (S16b) 

where t is the time (on a daily basis). For m > 1, a positive feedback is present, due to the fact that 

the growth rate of v defined as d(lnv)/dt increases as a power law of v itself, characterizing a super-

exponential dynamic with a finite-time singularity (Sammis & Sornette, 2002) and leading to a 

catastrophic landslide. For m < 1 or m = 1, the growth rate of v respectively decreases or plateaus 

with the increase of v, such that the slope continuously deforms with no failure and is therefore 

classified as a slow landslide. 

For a catastrophic landslide (m > 1), the predictability of failure depends on whether the large 

velocities related to the crisis (i.e., generated by slope tertiary creeps) can be statistically 

discriminated from those generated before the crisis (i.e., generated by slope secondary creeps). 

These pre-crisis large velocities correspond to the tail of the inverse gamma distribution which may 

degenerate into a power law, given that v ≥ v0 >> c: 

( )
( )

1
1

; ,

+

 
=  
  

bba
p v a b

b v
. (S17) 

Thus, we may estimate the number of pre-crisis large velocities as: 

( )
( )0

p 0; ,


−= =


b
b

v

Na
n N p v a b dv v

b b
, (S18) 

where N is the total number of observation days. On the other hand, we may estimate the number 

of crisis-related velocities by simply calculating the time to failure (in days): 

( )
0

c f 0

0 1
= − =

−

v
n t t

v m
, (S19) 

where tf is the time of failure (i.e., when v → ∞, which means in practice the transition to the inertial 

sliding regime during which the landslide develops in matters of seconds to minutes). Theoretically 

speaking, the failure is potentially predictable if nc is larger than np (i.e., the number of large 

velocities is greater than that expected from the null), corresponding to the “dragon-king” regime 

(Sornette & Ouillon, 2012). Otherwise, the failure tends to be unpredictable, corresponding to the 

“black-swan” regime (Taleb, 2010). This allows us to define the boundary between the black-swan 

and dragon-king regimes from np = nc, which leads to: 

( )0 0, , , , 1m a b v v N= + , (S20) 

where ω = v0
b+1bΓ(b)/(v̇0Nab) is a dimensionless parameter related to the statistical parameters of 

the null (i.e., a and b), the onset condition of the crisis (i.e., v0 and v̇0), and the observation period 
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(i.e., N). More intuitively, ω is related to the heterogeneity/stochasticity of the system (the less 

heterogeneous/stochastic the system is, the higher ω is), while m is related to the nonlinearity of 

the slope acceleration process (the more nonlinear the landslide behavior is, the higher m is). It is 

worth mentioning that the actual boundary between the black-swan regime and the dragon-king 

regime may be less sharp than predicted theoretically, because the detection of dragon-kings may 

require nc to be significantly larger than np (in a statistical sense). It can be seen that a landslide is 

more prone to be in the black-swan regime if the system is more heterogeneous (e.g., the null regime 

accommodates large velocities with a large a and/or a small b) or stochastic (e.g., the onset velocity 

v0 is small or the onset acceleration v̇0 is large). These conditions would cause the dragon-kings to 

be hidden within the tail of the inverse gamma distribution and thus become undetectable by our 

p-value analysis, so that dragon-kings could grow secretly and be spuriously mistaken as black-

swans. 

We implement the following procedures to process the landslide datasets in order to derive 

their ω and m values. We estimate a and b using the profile likelihood method (see Text S1). We 

estimate the onset velocity v0 as the transition velocity ξ; see equation (S10). We then estimate the 

m and v̇0 values, by fitting equation (S15) to the plot of slope acceleration versus slope velocity 

(Figure S4). Here, only the true velocity outliers, i.e., v**, are used with the acceleration data 

computed as the time derivative of the velocity data. In Figures S5 and S6, we show the derived ω 

and m values as well as their temporal variations for the three historical landslides. 

Text S6. Examination of the forecast method using synthetic slope velocity datasets. 

We test our forecast method using realistic synthetic slope velocity datasets generated from 

the probability density function of the inverse gamma distribution for the pre-crisis phase (i.e., the 

slope secondary creep stage), and the dynamic formulation of slope acceleration for the crisis phase 

(i.e., the slope tertiary creep stage). 

To cover typical observed values and regimes, we explore a broad parameter space of b = 0.2, 

0.4, …, 3 and m = 0, 0.2, …, 3, while assuming a = 2×10-4 m/day, c = –3×10-5 m/day, t0 = 1001 

days, v0 = 0.01 m/day, and v̇0 = 1×10-3 m2/day. We run 5 realizations (simulating the datasets of 5 

measuring instruments D1-D5) with their m values assigned with a standard deviation of 0.1, 

reflecting the fact that different compartments of a single slope can have different m values. We 

use equations (S16) to generate velocities during the crisis that starts from t0 and ends 100 days 

after (if no failure happens) or at an earlier date (if a failure happens before reaching this maximum 

number of crisis days). For the pre-crisis phase before t0, we sample t0–1 random velocities from 

the inverse gamma distribution. We set a maximum observation period of 1100 days; if a failure 

happens earlier, the actual observation period would be correspondingly shorter. 

In Figures S9 to S11, we show three representative synthetic velocity datasets generated for 

different b-m pairs, i.e., (i) b = 0.6 and m = 1.6 ± 0.1, (ii) b = 1.4 and m = 1.6 ± 0.1, and (iii) b = 1.4 

and m = 0.4 ± 0.1, as well as the forecast analysis results using our method. It can be seen that, in 

general, the synthetic datasets realistically resemble the empirical ones shown in the Letter. The 

first synthetic case illustrates a black-swan catastrophic landslide, where many large velocities have 

already appeared before the crisis such that the dragon-kings are hidden and undetectable from the 

p-value analysis (see Figure S9). The second case represents a dragon-king catastrophic landslide 

and the crisis can be predicted well before the failure from the p-value analysis (see Figure S10). 

The last case is a slow landslide with no failure although all the p-values systematically drop below 

0.1 (see Figure S11). In Figure S12, we summarize our prediction results for all the synthetic cases 

(240 combinations of the b and m parameters) in the ω-m phase diagram. In general, the results 

show a good consistency with the theoretically classified landslide regimes, except for a few cases 

near the boundaries, which is understandable considering the randomness in generated synthetic 

datasets and delicate calibration of parameters in finite noisy samples. The simulations and tests 

presented here using synthetic datasets generated with controlled parameters support the validity 

of our forecast method.  
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Figure S1. Time series of daily slope velocities for (a) the Preonzo landslide (based on 

extensometer measurements), (b) the Preonzo landslide (based on reflector measurements), (c) the 

Veslemannen landslide, and (d) the Moosfluh landslide. Insets show the velocity time series for the 

period of slope acceleration crisis of each landslide.  

b

dc

a
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Figure S2. Probability density functions of daily velocities of the Preonzo landslide on different 

selected dates close to the 2012 failure event. For each specific date, the analysis is based on the 

velocity data derived from the slope displacement time series recorded until that day by the 

extensometers (upper panel) and reflectors (lower panel). Inset: determination of the transition 

velocity ξ, beyond which velocities are considered as outlier candidates; the estimate of ξ 

corresponds to the point (marked by a blue-colored circle) where the Anderson-Darling distance A2 

reaches the global minimum.  

Extensometers

Reflectors
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Figure S3. Probability density functions of daily velocities of the Veslemannen landslide on 16 

different dates when red hazard alarms were previously released. For each specific date, the 

analysis is based on the velocity data derived from the slope displacement time series recorded until 

that day. Inset: determination of the transition velocity ξ, beyond which velocities are considered 

as outlier candidates; the estimate of ξ corresponds to the point (marked by a blue-colored circle) 

where the Anderson-Darling distance A2 reaches the minimum.  
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Figure S4. Probability density functions of daily velocities of the Moosfluh landslide on different 

selected dates during the 2016 crisis. For each specific date, the analysis is based on the velocity 

data derived from the slope displacement time series recorded until that day. Inset: determination 

of the transition velocity ξ, beyond which velocities are considered as outlier candidates; the 

estimate of ξ corresponds to the point (marked by a blue-colored circle) where the Anderson-

Darling distance A2 reaches the global minimum.  
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Figure S5. Estimation of parameter m for the three historical landslides. Derivation of the m value 

via a least square fitting on the bi-logarithmic plot of slope acceleration versus slope velocity based 

on (a) the Preonzo extensometer measurements, (b) the Preonzo reflector measurements, (c) the 

Veslemannen measurements, and (d) the Moosfluh measurements.  
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Figure S6. Temporal evolution of parameter m of the three historical landslides. It is estimated 

based on the available data until the given date (i.e., the horizontal axis) from (a) the Preonzo 

extensometer measurements, (b) the Preonzo reflector measurements, (c) the Veslemannen 

measurements, and (d) the Moosfluh measurements. Note that parameter m is only calculated for 

the period when the slope is subject to a crisis defined as when the overall p-value drops below the 

significance level α.  
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Figure S7. Temporal evolution of parameter ω of the three historical landslides. It is estimated 

based on the available data until the given date (i.e., the horizontal axis) from (a) the Preonzo 

extensometer measurements, (b) the Preonzo reflector measurements, (c) the Veslemannen 

measurements, and (d) the Moosfluh measurements. Note that parameter ω is only calculated for 

the period when the slope is subject to a crisis defined as when the overall p-value drops below the 

significance level α.  
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Figure S8. Temporal evolution of p-values calculated for the three historical landslides with a 

predefined significance level α of 0.05 (indicated by the dashed line). (a) Preonzo landslide. (b) 

Veslemannen landslide. (c) Moosfluh landslide. Note: the test statistics adopted for null hypothesis 

testing here for α = 0.05 are the same as those used in the Letter for α = 0.1; there are some subtle 

differences between the p-values here and those presented in the Letter, since different numbers of 

outliers might be determined in the outward sequential test at the different significance levels, 

leading to different p-values calculated in the block test.  
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Figure S9. Temporal evolution of p-values calculated for the three historical landslides using the 

classical test statistics. (a) Preonzo landslide. (b) Veslemannen landslide. (c) Moosfluh landslide. 

The dashed line corresponds to a significance level α of 0.1. The results are similar to those in the 

Letter, although the forecast performance seems to be less robust, especially for the Veslemannen 

landslide.  
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Figure S10. Examination of our forecast method using synthetic velocity datasets generated from 

an inverse gamma distribution with shape parameter b = 0.6 in conjunction with the dynamic 

formulation, i.e., equation (S16), with parameter m = 1.6 ± 0.1. (a) Generated synthetic datasets of 

daily slope velocities during the slope acceleration crisis. (b) Probability density functions of daily 

velocities available after the crisis with a failure (inset: before the crisis). (c) Determination of the 

transition velocity ξ for different dates during the crisis (the estimate of ξ corresponds to the point 

marked by a blue-colored circle in the inset; if no point is marked, the estimate of ξ is infinity, 

which is the case here). (d) Temporal evolution of p-values (the dashed line corresponds to a 

significance level α of 0.1).  
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Figure S11. Examination of our forecast method using synthetic velocity datasets generated from 

an inverse gamma distribution with shape parameter b = 1.4 in conjunction with the dynamic 

formulation, i.e., equation (S16), with parameter m = 1.6 ± 0.1. (a) Generated synthetic datasets of 

slope daily velocities during the slope acceleration crisis. (b) Probability density functions of daily 

velocities available after the crisis with a failure (inset: before the crisis). (c) Determination of the 

transition velocity ξ for different dates during the crisis (the estimate of ξ corresponds to the point 

marked by a blue-colored circle in the inset; if no point is marked, the estimate of ξ is infinity). (d) 

Temporal evolution of p-values (the dashed line corresponds to a significance level α of 0.1).  
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Figure S12. Examination of our forecast method using synthetic velocity datasets generated from 

an inverse gamma distribution with shape parameter b = 1.4 in conjunction with the dynamic 

formulation, i.e., equation (S16), with parameter m = 0.4 ± 0.1. (a) Generated synthetic datasets of 

slope daily velocities during the slope acceleration crisis. (b) Probability density functions of daily 

velocities available after the crisis with no failure (inset: before the crisis). (c) Determination of the 

transition velocity ξ for different dates during the crisis (the estimate of ξ corresponds to the point 

marked by a blue-colored circle in the inset; if no point is marked, the estimate of ξ is infinity). (d) 

Temporal evolution of p-values (the dashed line corresponds to a significance level α of 0.1).  

b

dc
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Figure S13. Phase diagram of landslide evolution validated on synthetic velocity datasets. In the 

Letter, three different regimes are theoretically defined (indicated by the shaded areas): black-swan 

catastrophic landslides, dragon-king catastrophic landslides, and slow landslides. The forecast 

method is used to predict the failure of synthetic landslide cases generated from an inverse gamma 

distribution (for the pre-crisis phase) in conjunction with the dynamic formulation, i.e., equation 

(S16) (for the crisis phase), with a broad parameter space of ω and m explored. Our criterion for a 

successful prediction of failure is that the individual p-values of the majority of instruments (i.e., 

at least 3 instruments over 5 in total) together with the overall p-value drop below the significance 

level α of 0.1 before the failure.  
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Additional Supporting Information (Files uploaded separately) 

Dataset S1. Slope displacement monitoring data of the Preonzo landslide. 

Movie S1. Pseudo-prospective forecast of the Preonzo landslide. 

Movie S2. Pseudo-prospective forecast of the Veslemannen landslide. 

Movie S3. Pseudo-prospective forecast of the Moosfluh landslide. 
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