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A B S T R A C T   

Accurate estimation of carbon cycle is a challenging task owing to the complexity and heterogeneity of eco-
systems. Carbon Use Efficiency (CUE) is a metric to define the ability of vegetation to sequester carbon from the 
atmosphere. It is key to understand the carbon sink and source pathways of ecosystems. Here, we quantify CUE 
using remote sensing measurements to examine its variability, drivers and underlying mechanisms in India for 
the period 2000–2019, by applying the principal component analyses (PCA), multiple linear regression (MLR) 
and causal discovery. Our analysis shows that the forests in the hilly regions (HR) and northeast (NE), and 
croplands in the western areas of South India (SI) exhibit high (>0.6) CUE. The northwest (NW), Indo-Gangetic 
plain (IGP) and some areas in Central India (CI) show low (<0.3) CUE. In general, the water availability as soil 
moisture (SM) and precipitation (P) promote higher CUE, but higher temperature (T) and air organic carbon 
content (AOCC) reduce CUE. It is found that SM has the strongest relative influence (33%) on CUE, followed by P. 
Also, SM has a direct causal link with all drivers and CUE; reiterating its importance in driving vegetation carbon 
dynamics (VCD) for the cropland dominated India. The long-term analysis reveals that the low CUE regions in 
NW (moisture induced greening) and IGP (irrigation induced agricultural boom) have an increasing trend in 
productivity (greening). However, the high CUE regions in NE (deforestation and extreme events) and SI 
(warming induced moisture stress) exhibit a decreasing trend in productivity (browning), which is a great 
concern. Our study, therefore, provides new insights on the rate of carbon allocation and the need of proper 
planning for maintaining balance in the terrestrial carbon cycle. This is particularly important in the context of 
drafting policy decisions for the mitigation of climate change, food security and sustainability.   

1. Introduction 

Human perturbations have led to highly capricious response of 
terrestrial vegetation to the changes in climate (Newbold et al., 2020). 
Modifications in the fluxes of momentum, water and energy in the earth 
system between land surface and atmosphere in recent decades have 
triggered significant variability in vegetation carbon dynamics (VCD) 
(He et al., 2018; Gang et al., 2022). Climate change has emerged as the 
most important and unpredictable factor that influences VCD. The sce-
nario of limited water due to lower precipitation and warming of both 
atmosphere and land can decline terrestrial productivity (Gahlot et al., 
2017; IPCC, 2019). Along with the changes in climate, various anthro-
pogenic influences such as land use land cover change (LULCC), agri-
cultural production and irrigation impacts VCD (Nemani et al., 2003; 
Chen et al., 2019). 

Vegetation greening has a significant role in mitigation of global 

warming and climate change, because the terrestrial vegetation acts as a 
major carbon sink (Piao et al., 2020; Sarmah et al., 2021). South Asia has 
been greening in the last two decades (Parida et al., 2020; Kashyap et al., 
2022) and much of it is contributed by India and China (Chen et al., 
2019). However, quantification of this greening in terms of terrestrial 
carbon sequestration is largely unknown (Sarmah et al., 2021; Verma 
et al., 2022). The carbon cycle will be strongly impacted by the regional 
climate change in south Asia, and India is a region yet to be adequately 
explored with respect to carbon budget studies (Bala et al., 2013; Sar-
mah et al., 2021; Verma et al., 2022). Scarcity of data, extensive 
computational requirements and the complex land-atmosphere in-
teractions in Indian region pose great challenges for undertaking such 
studies (Sarmah et al., 2021; Verma et al., 2022). 

Carbon use efficiency (CUE) is a measure of the ability of vegetation 
to sequester atmospheric carbon and is estimated as the ratio of Net 
primary productivity (NPP) to Gross primary productivity (GPP) (De 
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Lucia et al., 2007). It gives the amount of carbon stored and used for 
growth out of the net carbon acquired by the ecosystem. CUE provides 
insight on the vegetation functioning as it is the rate of conversion of 
GPP to NPP or the splitting of GPP to NPP and autotrophic respiration 
(Ra) (He et al., 2018; Gang et al., 2022). Although it is a simple method 
as per concept, the estimation of CUE requires measurement of carbon 
uptake and its use for the growth, which makes it computationally very 
challenging (Migliavacca et al., 2021; Gang et al., 2022). GPP and NPP 
are the most important ecosystem variables that are studied extensively, 
as they are the fundamental ecological variables, which quantify the 
terrestrial carbon assimilation (Nemani et al., 2003; Bala et al., 2013). 
GPP is the rate of carbon dioxide captured by vegetation in a given 
period of time through photosynthesis. NPP is the residual of GPP after 
Ra, and is measured as the net production or accumulation of dry 
organic matter in vegetation (Roxburgh et al., 2005; Ballantyne et al., 
2012). Terrestrial ecosystem carbon sink estimates, natural resource 
management and ecological studies are challenged by the high 
spatio-temporal variability of productivity (Ballantyne et al., 2012; 
Sarmah et al., 2021). 

Direct measurement of GPP and NPP based on instruments at land-
scape, ecosystem and canopy level is still a daunting task. Therefore, 
quantification of global productivity highly relies on remote sensing 
measurements from space and model simulations (Ballantyne et al., 
2012; Garbulsky et al., 2014). Satellite remote sensing enables larger 
sample size with unmatched global measurements for the synoptic 
monitoring of biosphere (Bala et al., 2013; Chen et al., 2019; Kashyap 
et al., 2022). Moreover, the unavailability of flux tower measurements in 
the regions of high carbon uptake makes remote sensing based VCD 
estimation inevitable (Sarmah et al., 2021; Verma et al., 2022). 

Terrestrial carbon budgeting is vital for understanding of the land- 
atmosphere interactions, carbon sequestration, biosphere-climate feed-
back and climate change mitigation (Campbell et al., 2017; Newbold 
et al., 2020). We hypothesise that, VCD regulate the functioning of 
terrestrial ecosystems including carbon capture (GPP), storage (NPP) 
and rate of storage (CUE), and is influenced by certain drivers such as 
the fraction of photosynthetically active radiation (FPAR), temperature 
(T), precipitation (P), soil moisture (SM) and air organic carbon content 
(AOCC). Evaluation of CUE, its drivers and the underlying mechanisms 
are key to understand the terrestrial carbon cycle. It provides a better 
understanding of the changes in climate, and energy exchange between 
vegetation and atmosphere. Our study considers algorithms such as 
principal component analysis (PCA, rotated and unrotated), multiple 
linear regression (MLR) and causal discovery for understanding the 
drivers of CUE in India. This is the first of its kind analysis on CUE and its 
drivers in the Indian context and is the significance of this study. 

2. Data and methodology 

2.1. Data 

The suitability and efficiency of Moderate Resolution Imaging 
Spectroradiometer (MODIS) data for studying large-scale terrestrial 
ecosystems are well established (e.g. Chen et al., 2019; Sarmah et al., 
2021; Kashyap et al., 2022). MODIS GPP (MOD 17 A2HGF) and NPP 
(MOD 17 A3HGF) primary productivity data are considered here 
(Turner et al., 2006; Running et al., 2015). The Vegetation Index (VI) 
data taken are the MODIS based (MOD13A1) Normalised Difference 
Vegetation Index (NDVI) (e.g., Liu et al., 2017; Singh et al., 2022). The 
MCD12Q1 version 6 data provide land cover types using supervised 
classification. The land temperature (T) data are from the Global Land 
Data Assimilation System (GLDAS) NOAH 025 M 21 that are a blend of 
National Ocean and Atmospheric Administration and Global Data 
Assimilation System (NOAA/GDAS) atmospheric analysis (Wang et al., 
2016; Xia et al., 2019). The precipitation (P) data are from the Global 
Precipitation Measurements (GPM, GPM_3IMERGDF L3), which is a 
multi-satellite integrated precipitation dataset with daily (mm/day) 

accumulated values (Xu et al., 2017). The GLDAS-based soil moisture 
data (SM) are also utilised in the study (Liu et al., 2019). The Modern Era 
Retrospective analysis for Research and Applications Version 2 
(MERRA–2) air organic carbon content (AOCC) data are used for the 
atmospheric organic carbon estimates (Shikwambana, 2019), as listed in 
Table 1. 

2.2. Methodology 

2.2.1. Estimation of variability in productivity and CUE 
This study is conducted for the Indian land region as shown in Fig. S1 

and Table S1. The MODIS land cover data are used to mask the vegetated 
land comprising of forests and croplands. The MODIS GPP and NPP are 
based on the rate of dry matter formation from absorbed radiation, 
called the light use efficiency (LUE) model approach. This is the most 
commonly used method for productivity computation using remote 
sensing measurements (Wang et al., 2017; Sarmah et al., 2021; Verma 
et al., 2022). The MODIS-based gap-filled GPP data for winter 
(December, January, and February – DJF), summer (March, April, and 
May – MAM), monsoon (June, July, and August – JJA) and 
post-monsoon (September, October, and November – SON) seasons over 
the years 2000–2019 are averaged to obtain the respective seasonal 
means. However, the NPP data are considered only for the yearly and 
decadal averages, as there are no seasonal data. The trend in GPP is 
computed for three focal periods: study period (2000–2019), previous 
decade (2000–2009) and recent decade (2010–2019). The negative 
trend in productivity is called browning and positive trend is greening. 
The spatio-temporal analyses of CUE, its drivers and their temporal 
trends are also computed. Since, the NPP data are available in the yearly 
frequency, we estimated the seasonality/seasonal anomaly (Si, i for each 
season) in GPP as the departure from the mean in each season (Xi) from 
the annual mean (X). That is, Si = X – Xi. Since our analysis focuses on 
the seasonal VCD, we did not consider smaller temporal scales. Based on 
the seasonality in GPP, the seasonal variation in NPP and CUE are 
estimated. CUE is estimated as the ratio of NPP to GPP (De Lucia et al., 
2007). 

2.2.2. Connection, contribution and influence of drivers 
PCA has been widely used in climate science for teleconnection an-

alyses (Lim, 2015; Gao et al., 2017; Mezzina et al., 2020). To better 
understand the linkages among the drivers and CUE, we have performed 
both unrotated (UPCA) and rotated PCA (RPCA) in our analysis. The 
method is detailed in supplementary file. However, it should be noted 

Table 1 
Datasets with their resolution, purpose they serve in this study and source from 
which they are acquired.  

Data Used Resolution Purpose Source 

MODIS NDVI 500 m NDVI used for estimating 
FPAR 

(https://lpd 
aacsvc.cr.usgs. 
gov/) 

MODIS GPP 500 m GPP, GPP trend, CUE 
estimation 

(https://lpd 
aacsvc.cr.usgs. 
gov/) 

MODIS NPP 500 m NPP, CUE estimation (https://lpd 
aacsvc.cr.usgs. 
gov/) 

MODIS Land 
Cover 

500 m LULC data to extract 
vegetated land comprising 
of forests and croplands 

(https://lpd 
aacsvc.cr.usgs. 
gov/) 

GPM Level-3 
precipitation 

0.1◦ × 0.1◦ Precipitation, relationship 
with CUE 

(https://daac. 
gsfc.nasa.gov/) 

GLDAS 
Temperature 

0.25◦ ×

0.25◦

Temperature, relationship 
with CUE 

(https://daac. 
gsfc.nasa.gov/) 

MERRA– 2 Air 
organic carbon 

0.5◦ ×

0.625◦

Air organic carbon, 
relationship with CUE 

(https://daac. 
gsfc.nasa.gov/) 

GLDAS Soil 
Moisture 

0.25 ×
0.25◦

Soil Moisture, relationship 
with CUE 

(https://daac. 
gsfc.nasa.gov/)  
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that relationship between PCA output and physical processes is not 
straightforward (Spensberger et al., 2020). 

The relative contribution and influence of drivers to productivity (P) 
and CUE variability are estimated using the modified multiple linear 
region (MLR, Kashyap et al., 2022) where the normalised trend (tren-
d/range) is used in place of trend unlike the conventional MLR (e.g. 
Kuttippurath and Nair, 2017; Kuttippurath et al., 2021) as detailed in 
supplementary file. 

2.2.3. Causal discovery of drivers 
Sensitivity of ecological systems and their interactions with both 

climate and anthropogenic processes have a nonlinear relationship and 
is very complex (Gahlot et al., 2017). Correlation is insufficient for 
detecting the complex and nonlinear associations with drivers with 
substantial autocorrelation, which does not necessarily imply causation 
(Runge et al., 2019). True causality necessitates not just the establish-
ment of relationship among the variables, but also provides its direction 
(e.g. Kumar et al., 2022). This study uses one such causal model within 
Pearl Causality (PC) framework to discover the potential drivers of CUE 
and PCMCI is the most widely used algorithm in climate science for 
causal discovery (e.g. Krich et al., 2020; Verma et al., 2022). 

In the first stage, the PCMCI algorithm identifies each driver’s par-
ents by performing an iterative conditional independence test by 
calculating the partial correlation between two time series. In the second 
stage, it assesses the statistical significance of causal links using 
momentary conditional independence (MCI) tests, and then estimates 
the strength of causal links using multiple linear regression (MLR). To 
determine causality, the PCMCI method employs a number of statistical 
tests, including linear partial correlations (Par-Corr) and nonlinear in-
dependence tests such as Gaussian process regressions and distance 

correlation (GPDC) and conditional mutual information (CMI). The 
PCMCI algorithm has two free parameters that the user must choose: 
maximum time delay (Tmax) and significance threshold (ά), which define 
the acceptable level of false-positive link discovery. For identifying 
causal links, this study employs PCMCI+ (a PCMCI extension) to allow 
the discovery of contemporaneous links based on linear Par-corr tests 
(Muñoz et al., 2021). Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test 
and the Augmented Dickey-Fuller (ADF) unit root test are used to 
examine the stationarity of the dataset prior to the causal analysis. 

3. Results 

3.1. Seasonal and decadal variability in terrestrial productivity 

The average GPP in various seasons for India during the period 
2000–2019 is shown in Fig. 1. In winter, high (>250 gC/m2/yr) GPP in 
Punjab and Haryana and moderate GPP (100–250 gC/m2/yr) in the rest 
of Indo-Gangetic plain (IGP) are observed. This is due to the rabi agri-
culture in this season, which is supported by optimum T (15–20 ◦C) and 
moderate SM (50–75 kg/m2) that lead to higher (>0.7) FPAR there, as 
shown in Figs. S2 and S3. In summer, majority of the lands show lower 
GPP (<100 gC/m2/yr) due to little P (<0.5 mm/day), lower SM (<75 
kg/m2), moderate FPAR (0.4–0.6) and very high AOCC (>20 mg/m2). In 
monsoon, NE (>500 gC/m2/yr), CI, and the western and eastern Ghats 
exhibit high GPP (>250 gC/m2/yr) owing to higher P (>7.5 mm/day) 
and SM (>125 kg/m2). However, higher T (>30 ◦C), lower SM (50–75 
kg/m2) and high AOCC (15–20 mg/m2) lead to moderate (100–250 gC/ 
m2/yr) GPP in NW, IGP and some areas in SI. In post-monsoon, NE 
(>500 gC/m2/yr), the eastern coasts and SI show higher GPP (>250 gC/ 
m2/yr) because of relatively high P (>5 mm/day) and SM (>125 kg/m2) 

Fig. 1. Gross Primary Productivity (GPP) during winter (December, January and February), summer (March, April and May), monsoon (June, July and August) and 
post–monsoon (September, October and November) seasons for the period 2000–2009 (top panel), 2010–2019 (middle panel) and 2000–2019 (bottom panel). 
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there. 
The spatio-temporal variability in terrestrial primary productivity i. 

e. GPP (Fig. 1) and NPP (Fig. 2) for both focal periods: (i) previous 
decade (2000–2009) and (ii) recent decade (2010–2019) are also esti-
mated. In winter, NW and IGP (Punjab and Haryana) depict enhanced 
GPP, but it is lower in the northern SI for recent decade in comparison to 
the previous decade. During summer, GPP is lower in NE and higher in 
the western areas of SI in recent decade. In monsoon and post-monsoon 
seasons, majority of the regions exhibits an increase in GPP in recent 
decade, except in SI. The NPP for the period 2000–2019 exhibits a 
specific spatial pattern in India, as illustrated in Fig. 2. For instance, high 
(>200 gC/m2/yr) NPP is observed in the forest areas of HR (western 
Himalaya) and NE. Croplands, mainly in CI and SI, also exhibit high 
NPP. In previous decade, NW and some areas in IGP exhibited lower NPP 
(<100 gC/m2/yr), whereas NE, coastal areas, SI and some regions in IGP 
show higher NPP (>200 gC/m2/yr). Interestingly, the western Hima-
laya, IGP, CI and northern SI show an increase in NPP in recent decade. 
Similar, results are also observed for GPP, with a strong increase in NW 
and IGP, but a substantial reduction in NE and SI regions. 

3.2. Carbon Use Efficiency (CUE) of vegetation 

3.2.1. Seasonal variability in CUE 
The seasonal variability of CUE in the vegetated Indian landmass for 

the period 2000–2019 is illustrated in Fig. 3. In winter, the colder re-
gions (5–10 ◦C) of NW with little P (0–0.5 mm/day) show very small 
(0.15–0.3) CUE (Figs. S2 and S3). Most areas in IGP, CI and some areas 
in SI with limited P (0–0.5 mm/day) and SM (50–75 kg/m2) exhibit 
moderate (0.3–0.45) CUE. On the contrary, the croplands in SI with 
optimum T (10–20 ◦C) and moderate SM (50–75 kg/m2) promote higher 
(0.6–0.75) CUE there. The forests in the western Himalaya with higher P 
(2.5–5 mm/day) and very small AOCC (5–15 mg/m2) show the highest 
(0.75–0.9) CUE among the regions. During summer, limited P (0.5–2.5 
mm/day) and SM (25–50 kg/m2) with high T (30–40 ◦C) and AOCC 
(25–35 mg/m2) lead to very small (0.15–0.3) CUE in some areas of IGP 
and NW. The availability of moisture in terms of P (0.5–2.5 mm/day) 
and SM (50–100 kg/m2) outplays the warm summer conditions 
(30–40 ◦C) to produce moderate (0.3–0.45) CUE in most areas of CI and 
SI. Conversely, the low T (5–15 ◦C), high P (2.5–7.5 mm/day) and 
moderate AOCC (15–25 mg/m2) in the Himalaya results in very high 
(0.75–0.9) CUE in these regions. 

In monsoon season, northern IGP with lower SM (25–50 kg/m2) 
show very small (0.15–0.3) CUE. Although there is high T (30–40 ◦C), 
the water availability in terms of both P (2.5–5 mm/day) and SM 
(75–125 kg/m2) results in higher (0.45–0.6) CUE in SI. Some coastal 
regions experience higher P (7.5–30 mm/day) that promote high 
(0.6–0.75) CUE there. Very high SM (>100 kg/m2) in the western areas 

of SI promote higher CUE (>0.6) in both monsoon and post-monsoon 
seasons. The eastern Himalaya has this cultivation season supported 
by sufficient P (15–30 mm/day) and SM (75–100 kg/m2) lead to high 
CUE in those regions. During post-monsoon, limited SM (50–75 kg/m2) 
in northern IGP produce low (0.15–0.3) CUE. Favourable P (2.5–5 mm/ 
day) and SM (75–125 kg/m2) promote high (0.45–0.75) CUE in CI. 
Forests in HR (western Himalaya) with high P (5–30 mm/day) and lower 
T (5–15 ◦C) lead to very high (0.75–0.9) CUE in the region. The spatial 
variability in CUE is in accordance with that of GPP and NPP, and with 
its drivers in each region. Henceforth, there exists a close link between 
CUE and GPP-NPP variability. 

3.2.2. Vegetation carbon dynamics 
Vegetation carbon dynamics (VCD) regulates the functioning of 

terrestrial ecosystems that includes carbon capture (GPP), storage (NPP) 
and rate of storage (CUE) as the ratio of NPP to GPP. Here, VCD is shown 
in terms of the long-term trend in GPP and spatial variability in CUE 
(Fig. 4). Positive trend in GPP (greening) is estimated in IGP (Punjab, 
Haryana and UP) northwest (Rajasthan), west (Maharashtra), CI (MP) 
and SI (Karnataka). Negative trend in GPP (browning) is observed in IGP 
(Bihar, Jharkhand, West Bengal), CI (Chhattisgarh and Orissa), NE and 
SI (Tamil Nadu and Andhra Pradesh). The CUE variability in India in the 
last two decades (2000–2019) shows a specific pattern. For instance, the 
regions such as NW, IGP and some areas in CI exhibit small (<0.3) CUE, 
but higher CUE (0.45–0.6) in CI and SI. Croplands in the western areas of 
SI (0.6–0.75), and forests in the Himalaya and NE (0.6–0.9) show very 
high CUE. Therefore, greening is found in the regions of lower CUE and 
browning in higher CUE regions. This is a major concern as there is a 
need of proper planning and management to protect the green cover in 
these areas of higher CUE. 

3.2.3. Vegetation types and CUE 
Apart from climate variability, vegetation type also plays a key role 

in VCD (Yao et al., 2018). The CUE is a function of ecozones and 
vegetation types (De Lucia et al., 2007). The Indian landmass has rich 
and varied vegetated land such as forests, croplands, agroforestry and 
plantations, and each type with specific role in carbon sequestration 
(Murthy et al., 2013; Le Quéré et al., 2018). The major vegetation types 
in India are shown in Fig. S4 and are listed in Table S2. In the western 
Himalaya, savanna, woody savanna, shrublands and evergreen broad-
leaf forest exhibit very high CUE (0.75–0.9), as shown in Fig. 4. These 
regions are majorly alpine forests dominated by trees such as pine and 
oak. The evergreen broadleaf forests in the eastern Himalaya exhibit 
higher (>0.75) CUE. In CI, shrublands, savanna dominated by woody 
perennials and deciduous broadleaf forests also show higher (>0.6) 
CUE. The savannas, grasslands and croplands in CI and SI regions show 
CUE of 0.6 or higher. Croplands exhibit moderate (0.3–0.45) CUE in IGP, 

Fig. 2. Net Primary Productivity (NPP) averaged over the periods 2000–2009, 2010–2019 and 2000–2019.  
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CI and western coastal plains. The croplands in the western NW have 
low CUE (0.15–0.3). In general, forests exhibit higher CUE than that by 
croplands. Therefore, vegetation type is also a major factor in deter-
mining the CUE of ecosystems. VCD and CUE are ecosystem-specific 
parameters and they vary for different biomes and vegetation types 
(He et al., 2018; Gang et al., 2022). Henceforth, the selection of plant 
type is very important in reforestation, agroforestry and plantation ac-
tivities, particularly for climate change mitigation measures. 

3.3. CUE: variability, role of drivers and underlying mechanisms 

3.3.1. Interannual variability 
CUE is greatly affected by climate drivers such as T and P (He et al., 

2018; Gang et al., 2022). The changing climate has highly influenced 
VCD with a reduction in NPP during the drought years (Bala et al., 2013; 
Gang et al., 2022). There are negative impacts of T extremes on cropland 
productivity (Lobell and Gourdji, 2012). Here, the interannual vari-
ability in CUE is explored in relation to its drivers in FPAR, SM, P, T and 
AOCC, as demonstrated in Fig. 5. The years 2003–2008, 2010, 2011, 
2013 and 2014 with higher water availability (P and SM) and higher 
FPAR show higher CUE. However, CUE is lower in the years 2000–2002, 
2009, 2012 and 2015 due to the reduction in water availability. The 
years of predominant warming such as 2002, 2009 and 2016 show the 
combined effect of limited P and high T, where the resulting low SM and 

FPAR lead to small CUE (warming induced moisture stress). In addition, 
these years also have higher AOCC, which negatively affect CUE. The 
water availability accompanied by cooling has led to higher CUE 
(moisture induced greening) in 2004, 2011 and 2013, as also found in 
other studies (e.g. Pérez-Girón et al., 2020, 2022). 

3.3.2. Connection with drivers 
PCA is carried out to understand the connection of CUE with its 

drivers, as shown in Fig. 5. Here, both UPCA and RPCA are performed 
with two PCs, namely PC1 and PC2 based on eigen values. PC1 is defined 
in UPCA by SM (0.84), P (0.66) and CUE (0.61) with positive correla-
tion, whereas T (− 0.83) and AOCC (− 0.66) are correlated negatively 
with PC1. It shows that the water availability components in SM and P 
exhibit comparable variability as for CUE. This is expected as P drives 
SM and both have strong positive association with CUE. However, the 
negative correlation of T and AOCC with PC1 suggests that these factors 
have a detrimental effect on the variability of CUE and other variables in 
PC1. Due to the overwhelming negative influence of T and AOCC, FPAR 
(− 0.38) shows a weak negative correlation with PC1. PC2 is largely 
determined by the variability of CUE (0.65), FPAR (0.81) and P (0.49); 
indicating that FPAR has a positive impact on the variability of CUE. 

To better understand the relationship among the drivers and CUE, we 
used the varimax approach to rotate the PCs. In RPCA, it is observed that 
CUE (0.88), P (0.82) and SM (0.81) have a very strong positive 

Fig. 3. The Carbon Use Efficiency (CUE) during winter (December, January and February), summer (March, April and May), monsoon (June, July and August) and 
post-monsoon (September, October and November) seasons averaged over the last 20 years (2000–2019). 
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correlation with PC1, which indicates that these variables are highly 
connected among themselves. T (− 0.41) has a negative correlation with 
PC1 as higher T will adversely affect CUE. PC2 is also distinguished by a 
strong positive correlation with FPAR (0.85), AOCC (0.84) and T (0.8). 
However, T (− 0.41) also influences PC1 negatively as higher T will 
adversely affect SM, P and CUE. AOCC (− 0.15) exhibits weak negative 
correlation with PC1, which suggests that it has a weak negative 
connection with CUE. Henceforth, PCA analysis demonstrates that both 
SM and P have strong positive association with CUE. This points out the 
close connection between carbon and water cycles in cropland domi-
nated India. 

3.3.3. Contribution and influence of drivers 
CUE and VCD are regulated by the changes in terrestrial productiv-

ity, which is influenced by the spatial and temporal variability in 
drivers. SM (32.83%) is the most dominant driver of CUE in cropland 
dominated India; indicating a close link between carbon and water cy-
cles. P (26.13%), FPAR (22.32%), and AOCC (16.47%) make significant 
contributions to CUE variability. The relative influence (positive/nega-
tive) of the drivers on the GPP trend and CUE is shown in Fig. 6. The 
positive influence of SM and T dominates over the negative influence of 
P and AOCC; leading to increase in productivity (greening) called 
moisture induced greening, which is observed in NW (Parida et al., 
2020; Kashyap et al., 2022). In CI, positive influence of AOCC might be 
the reason for greening due the cooling effect there, which is also 
replicated by anthropogenic aerosol (brown haze) in this region (e.g. 
Kuttippurath and Raj, 2021). The enhanced productivity (greening) in 
IGP can be attributed to the anthropogenic intrusions such as the 
improvement in irrigation facilities, enhanced farm mechanisation and 
application of nitrogen-based fertilizers (Nayak et al., 2013; Ambika and 
Mishra., 2020). The negative influence of SM and T (warming induced 
moisture stress) is dominant over the positive influence of P, and that 
lead to reduced productivity (browning) in SI. The warming induced 
moisture stress is prevalent in this region, which is predominant in the 

areas of Tamil Nadu (e.g. Parida et al., 2020; Kashyap et al., 2022). In NE 
and eastern areas of IGP, large-scale anthropogenic activity (shifting 
cultivation and land abandoning) has led to green cover loss and 
browning. The NE region has severe consequences of human induced 
LULCC as the loss of vegetation cover drives extreme events such as fires 
and landslides in these ecologically fragile regions (Sannigrahi et al., 
2020; Kashyap et al., 2021). 

3.3.4. Causal discovery of drivers 
The causal graphs/network are developed by considering various 

maximum time delay (Tmax) or lag and significance threshold (ά) to 
understand the non-linear role of drivers in terrestrial VCD. As ά is 
increased from 0.1 to 0.05 and further to 0.01, the number of causal 
links diminishes and only the strong links remain. Also, the causal 
graphs at different Tmax (lag) provide insights on the mechanisms 
influencing CUE and terrestrial VCD at different temporal scales ranging 
from Tmax = 1–3 months, as shown in Fig. S5. Here, we have shown the 
causal graph for Tmax = 4 (Fig. 7), where a number of causal structures 
are established at ά = 0.1. P does not have a direct causal link with CUE, 
but it drives SM that has a direct link with CUE with lag of 2 months. P 
also has a link with FPAR, which has a direct positive connection with 
CUE in a 1-month lag. FPAR is used as a proxy for photosynthesis and 
higher P would support more photosynthesis and faster carbon uptake (i. 
e. higher CUE). P has a negative link with T (lag = 1 month), which has 
direct negative link with CUE (lag = 2 months). Therefore, P affects CUE 
indirectly through other drivers. T has a strong negative link with FPAR, 
as photosynthetic activity responds well only to the optimum range of T, 
and therefore, CUE has a direct negative link with T. Furthermore, T has 
a negative link with SM, which has a direct positive link with CUE; 
explaining the negative link between T and CUE. AOCC also has a direct 
negative link with CUE, as biomass burning in extensive croplands and 
wild fires in forests release the stored carbon stocks captured by the 
vegetation and reduces CUE. Similar causal links are also observed for ά 
= 0.05 and for ά = 0.01. 

Fig. 4. Gross Primary Productivity (GPP) trend (decreasing– browning; increasing – greening). The ratio of NPP to GPP gives the Carbon Use Efficiency (CUE) for the 
period 2000–2019. 
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4. Discussion 

4.1. Background and our findings 

India is second to China in global greening as revealed by the 
satellite-based leaf area index (LAI) analysis (Chen et al., 2019). How-
ever, quantification of this greening in terms of terrestrial VCD is still 
uncertain (Sarmah et al., 2021; Verma et al., 2022). Therefore, we uti-
lised the MODIS data to understand the changes in terrestrial produc-
tivity for the last two decades. To find the carbon sequestration potential 
of vegetated land, CUE is estimated, for the first time for India. 

Regarding the productivity, Singh et al. (2011) utilised satellite data 
and model results, and found a positive trend of 8.5%/dec in NPP for 
India during the period 1981–2000. Another study by Nayak et al. 
(2013), by using model results, showed that the increase in agricultural 
production is the major reason for enhanced NPP in India during the 
period 1981–2006. Bala et al. (2013) reported about 4%/dec increase of 
NPP in India based on the AVHRR satellite data for the period 
1982–2006. Our analysis also shows that there is about 13% increase in 
NPP during the study period (2000–2019). In addition, Bala et al. (2013) 
showed that the seasonal cycle of terrestrial productivity is strongly 
influenced by SM in India. Kashyap et al. (2022) also revealed that SM is 
the dominant driver of photosynthetic trend in India during the last two 
decades. The carbon-water cycle interactions in India is complex and 
exhibit high regional variability owing to the conventional irrigation 
pattern in the croplands (Verma et al., 2022). Our analyses show that SM 

has a dominant role in driving VCD and thus, expose a strong link be-
tween carbon and water cycle in India. However, Sarmah et al. (2021) 
found that there is a mismatch between the greening trends and 
terrestrial carbon uptake in south Asia. The greening is largely observed 
in the croplands, which has limited carbon uptake potential. This is also 
reciprocated in our study as the high CUE regions are browning. This is a 
big concern for the terrestrial VCD with implications for anthropogenic 
climate change. 

4.2. Novelty and wider implications 

Most studies have relied on either correlation (Bala et al., 2013) or 
partial correlation (Sarmah et al., 2021) for finding the role of potential 
drivers in the variability of terrestrial productivity. A recent study by 
Verma et al. (2022) utilised causal discovery to find the drivers of GPP. 
However, there were limited number of drivers with known influence. 
Our analysis is not centred around the causal approach, but we utilise 
the method to examine the robustness of our results derived using 
various statistical techniques such as the correlation analysis, MLR and 
PCA. Our study provides new insights on the rate of carbon allocation 
and conversion to new biomass in ecosystems. Furthermore, it brings 
into light the ecologically vulnerable regions (NE, eastern IGP and some 
areas in SI), which requires immediate attention to increase the green 
cover for maintaining balance in the terrestrial carbon cycle, and also to 
mitigate carbon-induced climate change. Since India has various vege-
tation types, our study would also serve as a reference for quantification 

Fig. 5. Interannual variability in Carbon Use Effi-
ciency (CUE) and its drivers– Fraction of Photosyn-
thetically Active Radiation (FPAR), Precipitation (P), 
Temperature (T), Soil Moisture (SM) and Air Organic 
Carbon Content (AOCC) (top panel). The Principal 
Component Analysis (PCA) comprising of Unrotated 
PCA (UPCA) and Rotated PCA (RPCA) shows the links 
among CUE and its drivers. Here, the green and 
magenta lines represent positive and negative corre-
lations, respectively. The thickness of the lines is a 
measure of the strength of the link represented in 
terms of correlation coefficients. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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and understanding the mechanisms influencing VCD at regional and 
global scales. Additionally, our analyses would enhance the perfor-
mance of Earth System models by providing better model input for 
carbon fluxes between land and atmosphere. The balance in the terres-
trial carbon cycle is key to achieve ambient atmospheric and environ-
mental conditions. Weakening of efficient vegetation carbon sinks is a 
great concern for sustainability, global warming and climate change. 
Knowledge about the country-wide terrestrial VCD is very important to 
draft policies for mitigating climate change impacts on food production 
and to achieve sustainable development goals (SDGs). 

4.3. Constraints 

Improved spatial resolution of the datasets would give more detailed 
information on terrestrial VCD. This study assumes the seasonal vari-
ability in NPP to be the same as that of GPP for estimating CUE as there 
are no seasonal datasets for NPP. The contribution of drivers estimated 
here is the “relative contribution” where the sum of contribution of all 

drivers is 100%. As there can be other drives, this assessment does not 
claim exact contribution of any driver in regulating VCD. Since the 
MODIS data are available from 2000 onwards, and the years 2020 and 
2021 have the influence of COVID-induced lockdown (Kashyap et al., 
2023), the period 2000–2019 is considered in our analysis. 
Ground-based measurements of productivity might provide better re-
sults, but those are not available for the Indian region to assess VCD. 
Therefore, the above -mentioned limitations could influence the un-
certainty of the estimates. 

5. Conclusions 

The vegetation carbon dynamics (VCD) regulates functioning of 
terrestrial ecosystems, as it includes carbon capture (GPP), storage 
(NPP) and rate of storage (CUE). Here, we have utilised PCA, MLR and 
causal discovery to examine the key drivers of CUE variability in India 
for the period 2000–2019. Water availability (SM and P) promotes 
higher CUE, but higher T and AOCC reduce CUE. There is an increase in 

Fig. 6. Relative influence (negative/positive) of the spatial trend in climate drivers– precipitation (drying/showering), temperature (cooling/warming), soil moisture 
(drying/moistening), and air organic carbon content (high/low) on the productivity trend (browning/greening) and Carbon Use Efficiency (CUE) over the 
period 2000–2019. 
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productivity (greening) in regions of lower CUE in NW (moisture 
induced greening) and IGP (irrigation induced agricultural boom). 
However, a reduced productivity (browning) is found in regions of 
higher CUE such as NE, lower IGP (deforestation and extreme events) 
and SI (warming induced moisture stress). Apart from climate drivers, 
anthropogenic intrusions (e.g. land use change, irrigation, farm mech-
anisation and pollution) also play a role in regulating VCD. Since 
browning is found in regions of higher CUE, it is a major concern as it 
indicates weakening of efficient terrestrial carbon sinks. Thus, there is a 
need of proper planning to protect the green cover in the areas of higher 
CUE. 

This study, therefore, recommends preservation of green cover for 
maintaining balance in the terrestrial carbon cycle. The preservation of 
indigenous green cover and afforestation, particularly in the regions of 
higher vegetation CUE, is very important as it would reduce the carbon 
footprints in the world of global warming, rising population and high 
pollution. Our analysis provides new insights on the rate of carbon 
allocation and help to accurately quantify the ability of vegetation to 
convert carbon to new biomass in ecosystems. Accurate quantification of 
CUE for different ecozones and vegetation types would enhance the 
performance of Earth System Models by providing better input for land- 
atmosphere interactions. These findings would enable us to counter the 
challenges of food security, global warming, climate change, and attain 
sustainability by drafting and implementing relevant policies. 
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