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Abstract: On re-examining the problem of linear gravity waves in two layers of fluids with a viscous
ice layer overlaying water of deep depth, we give a detailed analysis of the fluid velocities, velocity
shear, and Reynolds stress associated with wave fluctuations in both the ice layer and the wave
boundary layer just beneath it. For the turbulent wave boundary layer, water eddy viscosity is
used. Comprehensive discussions on various aspects of the velocity fields are made in terms of a
Reynolds number based on the ice-layer thickness and viscosity, and the ice-to-water viscosity ratio.
Speculation of the wave-induced steady streaming is made based on the Reynolds stress distribution,
offering a preliminary insight into the mean flows in both the ice layer and wave boundary layer
in the water. For wave attenuation, the results using a typical ice viscosity and a reasonable water
eddy viscosity show good agreement with data over the range of frequencies for field and lab waves,
significantly outperforming those assuming an inviscid water.

Keywords: wave boundary layer under ice; marginal ice zone; wave-induced Reynolds stress; steady
streaming

1. Introduction

Marginal ice zones (MIZs) are distinguished by the highly heterogeneous condition of
sea ice, e.g., floes of various sizes, pancake, brash and frazil ice, ice ages, brine content, ice
thickness and concentration, etc. This makes it challenging to model wave propagation in
MIZs, either theoretically or numerically, since there remain similar limitations to mathe-
matically describing such an ice cover on the ocean surface. Even with today’s computing
resources, it is intimidating to discretely model individual sea ice interacting with random
waves as they propagate in the MIZ.

Aiming at describing the collective effects of broken ice, mathematical models tend
to treat such a heterogeneous ice cover as a continuum, e.g., the mass loading model [1],
models of elastic plates or viscoelastic beams [2–4], and models of two layers of fluids
with a viscous or viscoelastic ice layer overlaying water [5–10], among others; see reviews
in [11,12]. In most of those studies, the primary interest is to obtain the dispersion equa-
tion, which describes the relation between the wave frequency ω = 2π/ f and complex
wavenumber k = kr + iki, where 2π/kr is the wavelength and ki is the wave attenuation
rate (if the system is dissipative). The intense interest is driven, in part, by applications of
large-scale modeling of waves in MIZs, where a reliable estimate of ki(ω) is important since
it enters the formulation of model dynamics for wave energy spectral distribution [13].

Despite the complexities in various treatments of the ice-agglomeration layer, many
existing studies assume an inviscid underlying water, with a few exceptions (e.g., [5,7,9]).
Furthermore, the emphasis on wave attenuation seems to have overshadowed interest in
other aspects of the linear wave motions in ice-covered water. In most abovementioned
studies, features of the velocity fields in both the ice layer and the water beneath it are little
discussed. For a composite, dissipative fluid system, such as a viscous or viscoelastic ice
layer overlaying water, the velocity distributions in both fluids are not definitely determined
until the dispersion relationship is solved. In the mathematical forms of the wave-like
solutions, there is a set of coefficients that specify the contributions of rotational (due
to the presence of viscosities) and irrotational flows in a layer, and the proportionality
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between flows in different layers. These coefficients are not individually arbitrary, but have
a relationship that is constrained by the conditions at the uppermost free surface and the
fluid–fluid interface(s), and is unique to a given wave frequency. This is seen more clearly
from the mathematical point of view. Regardless of the different physics in modeling the
ice layer and whether the water is viscous or inviscid, the mathematical problem of this
type of linear wave theory is eventually to solve a homogeneous system (in matrix form
Mx = 0) that results from satisfying the free surface boundary and interface conditions.
The equation for the wave dispersion relation is the vanishing of the determinant of matrix
M, while the admissible values for those abovementioned coefficients are from the null
vector x corresponding to k(ω). That is, the partitions of the linear flow between the layers,
and the rotational and irrotational parts in a layer, are unique for a wave condition of ω
and k, and affected by the fluid properties just as the dispersion relation is.

In this study, we re-consider the problem of linear waves in a two-layer fluid system
of a viscous ice layer overlaying viscous water. Our interest is in the distributions of fluid
velocities in both the ice layer and wave boundary layer in the water just underneath the
ice. With an ice-agglomeration cover, the wave boundary layer at the ice–water interface is
expected to be enhanced due to the eddy activities resulting from broken ice interacting
with the wave [5,7]. In a recent small-scale lab study, Rabault et al. [14] reported eddy
structures from PIV (particle image velocimetry) measurements, attributing their origin to
the generation, and subsequent diffusion of strong vortices by the drifting and colliding
of packs of grease ice. On the other hand, the water velocities and their shear rates in
the boundary layer affect the ice-layer flow above, because of the conditions of stresses
and velocities at the ice–water interface. Naturally, questions may be asked: How do the
ice-layer viscosity and thickness affect the boundary layer water flow just underneath
the ice? How do the eddies and shear-induced mixing in the wave boundary layer, as
indicated by the water eddy viscosity, affect the velocity distribution in the ice layer?
Furthermore, the effects of viscosities alter the phase relation between the waves on the
upper surface and at the interface and, consequently, the phase relation between the
fluid velocities. This is the manifestation of waves becoming rotational. However, the
physical importance is that the horizontal and vertical velocities of the linear flow are now
correlated, producing a Reynolds stress that represents the mean momentum flux due to
the linear wave fluctuations. This is the driving force for wave-induced Eulerian steady
streaming, which, when combined with the Stokes drift, gives the Lagrangian transport
of particles [15,16]. What are the vertical profiles of the wave-induced Reynolds stress in
the ice layer and the water underneath it? How are they affected by the ice and water
viscosities? With a goal of obtaining the drift velocity under the ice, Weber [5] formulated a
nonlinear analysis using a Lagrangian formulation. To ease the mathematical complexity,
Weber considered the asymptotic limit when the upper ice layer is so thin and viscous
that it is equivalent to an inextensible surface film. While a formal nonlinear analysis
can be carried out using the similar method, but treating the ice layer as a viscous fluid,
the Reynolds stress (a nonlinear property obtained from the linear flow) can nevertheless
provide preliminary insight into the steady streaming.

Since it must first be solved before analyzing the fluid velocity field, we will dis-
cuss the results of the dispersion relation , but in the dimensionless plane using the ice
thickness-based normalization introduced in [17]. This leads to the dimensionless pa-
rameters, including a Reynolds number that is defined using the ice-layer viscosity and
thickness, and measures the time scale of vorticity diffusion in the ice-layer flow relative
to the inertial time scale of wave motion, the ice-to-water viscosity ratio, and the density
ratio. As demonstrated in [17], examination of results in the dimensionless plane leads to
more comprehensive understanding. We note that De Carolis and Desiderio [7] formulated
the linear wave theory for a viscous ice layer covering viscous water of an arbitrary depth
(including deep water depth), but only solved the dispersion relation; when discussing the
results (in the dimensional plane) for low frequencies that are relevant for field waves, they
limited their attention to very thin ice (1∼3 cm) and high ice viscosity (1∼2000 m2/s).
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Using data from various field and lab studies, Yu et al. [17] calibrated the two-layer
models of wave attenuation by sea ice (with underlaying inviscid water) and showed that
for the model of a viscoelastic ice, the effective shear modulus needs to be low, between tens
to a few hundred Pascal. This suggests that elasticity is not important for broken ice. The
analysis in this study is for a viscous ice layer, but can readily be extended to a viscoelastic
ice layer with a viscous water if the interest arises. For linear harmonic oscillations in
viscoelastic fluids, the Voigt model can be used (i.e., introducing a complex viscosity with
the imaginary part incorporating the elasticity) to render the mathematical formulation
formally the same as that for viscous fluids. The results here can then be transformed by
replacing the ice viscosity with the complex ice viscosity to analyze the linear boundary
layer beneath a viscoelastic ice-agglomeration fluid layer. Note that the dispersion relation
for such a viscoelastic fluid layer with a viscous water has been studied in [9]. It should be
mentioned that there are studies considering the ice cover as an elastic or viscoelastic plate
(i.e., a solid) responding to wave motions (e.g., [18–20]). The mathematical formulation for
floating body–fluid interaction is different from that for a viscoelastic fluid overlaying the
water as mentioned above.

The rest of the paper is organized as follows. The mathematical formulation is de-
scribed in Section 2. Since the equations and solution procedure are standard and can
easily be found in the literature, we have purposely omitted the tedious algebraic details
to focus on discussing the results in Section 3. The dispersion relation is discussed in
Section 3.1; the solution of wave attenuation is compared with a number of field and lab
datasets in Section 3.2; the distributions of fluid velocities are analyzed in Section 3.3; the
wave-induced Reynold stress is discussed in Section 3.4, where speculation on the steady
streaming is also made. Summary and concluding remarks follow in Section 4.

2. Mathematical Formulation

Consider a two-layer fluid system in which the upper layer is thin and highly viscous,
representing the ice-agglomeration cover of the ocean surface (Figure 1). Let z points
upward and x point to the direction of wave propagation. The undisturbed upper layer
occupies 0 < z < h, having a constant density ρ1 and an effective ice viscosity ν1. For z < 0,
the seawater density is ρ2. Because of the large velocity shear resulting from the interaction
with the viscous flow in the ice layer, the seawater viscosity ν2 is expected to be important
in the thin wave boundary layer (WBL) at the interface. The thickness of the WBL is O(δ2),
where the Stokes layer thickness in water is δ2 =

√
2ν2/ω and ω is the angular frequency

of the wave. Outside the WBL for z � −δ2, the wave motion is approximately inviscid,
and the region is referred to as the inviscid core. Without losing any generality and for
mathematical simplicity, we consider the water depth to be so deep that the seabed has
little effect on the wave at the interface or on the upper surface, and is therefore irrelevant.

η1 = a1e
i(kx−ωt) + c.c.

η2 = a2e
i(kx−ωt) + c.c.

WBL

ice layer: ρ1, ν1

water: ρ2, ν2

x

z

z = 0

h

Figure 1. A 2D sketch of a two-layer fluid system, showing the waves propagating on the upper free
surface, at the interface, and at the wave boundary layer (WBL) underneath the ice. In η1 and η2, c.c.
stands for the complex conjugate.

Both fluids are considered incompressible, and ρ1 < ρ2, ν1 > ν2. In the ice layer
and WBL in water, the motions are described by the Navier–Stokes equations, while for
z � −δ2, the Euler equations apply. At the basic state, the fluids are at rest; hence, the
pressure is hydrostatic and the free surface of the upper layer and the ice–water interface
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are horizontal at z = h and z = 0, respectively. For linear waves, the equations of motion,
the boundary conditions at the upper free surface, and the matching conditions at the
interface are all linearized about the basic state. Let the subscript j indicate the fluid layer;
i.e., j = 1 for h < z < 0 in the upper ice layer and j = 2 for z < 0 in the water. The
continuity equations for mass conservation in both fluids are

∂uj

∂x
+

∂vj

∂z
= 0. (1)

For the ice-layer and WBL flows, the linearized momentum equations are

∂uj

∂t
= − 1

ρj
∇Pj + νj

(∂2uj

∂x2 +
∂2uj

∂z2

)
, (2)

where the velocity vector uj = (uj, vj) and Pj is the dynamic pressure so that the total
pressure

p1 =−ρ1g(z− h) + P1 for 0 < z < h, (3a)

p2 = ρ1gh− ρ2gz + P2 for z < 0. (3b)

Outside the WBL for z� −δ2, the motion approaches the inviscid flow that follows

∂UI

∂t
= − 1

ρ2
∇PI, (4)

where UI = (UI, VI) and PI is the dynamic pressure for the potential flow. η1(x, t) and
η2(x, t) are, respectively, the waves propagating on the upper free surface and at the
interface. The linearized boundary conditions at the upper free surface are the kinematic
condition, and vanishing of the two components of surface stress, i.e., at z = h,

∂η1

∂t
= v1, (5)

ν1

(∂u1

∂z
+

∂v1

∂x

)
= 0, (6)

−gη1 +
P1

ρ1
− 2ν1

∂v1

∂z
= 0. (7)

At the interface, the continuity of velocities and stresses are required, i.e., at z = 0,

u1 = u2, (8)

v1 = v2 =
∂η2

∂t
, (9)

ρ1ν1

(∂u1

∂z
+

∂v1

∂x

)
= ρ2ν2

(∂u2

∂z
+

∂v2

∂x

)
, (10)

P1 − ρ1gη2 − 2ρ1ν1
∂v1

∂z
= P2 − ρ2gη2 − 2ρ2ν2

∂v2

∂z
. (11)

For z� −δ2,
(u2, v2)→ (UI, VI), P2 → PI. (12)

We consider plane waves propagating in the +x direction on the free surface and at
the ice–water interface, and seek solutions in the form of

[uj, vj, Pj, ηj] = [ûj(z), v̂j(z), P̂j(z), η̂j]ei(kx−ωt) + c.c., (13)

where the complex wavenumber k = kr + iki, ω is real, and c.c. stands for the complex
conjugate. The linear Navier–Stokes Equations (1) and (2) can be solved by decomposing
the velocity field into the irrotational and rotational components, which can be expressed,
respectively, as the gradient of velocity potential and the curl of the stream function [21].
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From Equations (1) and (2), we then obtain the Laplacian equation for the velocity potential,
the linear vorticity equation for the stream function, and the Bernoulli equation for the pres-
sure field. From those equations, it follows the mathematical forms for the z-dependencies
in Equation (13). The algebraic details can be found in the literature (e.g., [7,21]) and are
therefore omitted here. We only quote the solution forms. For 0 < z < h,

û1 =−ik(Aekz + Be−kz)− α1(Ceα1z − De−α1z), (14a)

v̂1 = −k(Aekz − Be−kz) + ik(Ceα1z + De−α1z), (14b)

P̂1 = −iωρ1(Aekz + Be−kz), (14c)

where
α1 =

√
k2 − iω/ν1. (15)

For z < 0 and inside the WBL, i.e., −z ∼ O(δ2),

û2 =−ikEekz − α2Feα2z, (16a)

v̂2 = −kEekz + ikFeα2z, (16b)

P̂2 = −iωρ2Eekz, (16c)

where
α2 =

√
k2 − iω/ν2. (17)

The constant coefficients A, B, C, D, E, F are to be determined. By definition, the real parts
of α1 and α2 are positive. In Equations (14) and (16), the terms associated with α1 and
α2 represent the rotational components of the velocity fields, being associated with the
curls of stream functions in the ice layer and WBL, respectively. Note that we can rewrite
α2 = (k2 − 2iδ−2

2 )1/2. For water wave motions, the eddy viscosity due to turbulent mixing
can be as much as 100 cm2/s or even larger, and 20–40 cm2/s is the typical range [16]. For
a period of 10 s, δ2 can be estimated to be roughly 8–18 cm for a turbulent WBL, compared
with the wavelength of 156 m. Thus, |α2| ∼

√
2/δ2 for most waves. It is then seen from

Equation (16) that the terms eα2z rapidly die out as we move downward away from z = 0.
Thus, we obtain the potential flow solution in the inviscid core, i.e., for z� −δ2,

ÛI = −ikEekz, V̂I = −kEekz, P̂I = −iωρ2Eekz. (18)

One can verify that the wave-like solutions in Equation (13), together with
Equations (14), (16), and (18), satisfy the continuity
Equation (1), the momentum Equation (2) for the viscous flow, and (4) for the poten-
tial flow. Upon satisfying the boundary and interface conditions (5)–(11), and substituting
the complex amplitudes η̂1 and η̂2 using (5) and (9), we obtain six homogenous equations
for A, B, C, D, E, F; i.e.,

2ik2ekh A− 2ik2e−khB + (α2
1 + k2)eα1hC + (α2

1 + k2)e−α1hD=0, (19a)

(2ν1k2 − iω + igk/ω)ekh A + (2ν1k2 − iω− igk/ω)e−khB

−(2iν1kα1 − gk/ω)eα1hC + (2iν1kα1 + gk/ω)e−α1hD=0, (19b)

ikA + ikB + α1C− α1D− ikE− α2F=0, (19c)

A− B− iC− iD− E + iF=0, (19d)

ik2(2− ρ2

ρ1

ν2

ν1

)
(A− B) +

[
α2

1 + k2(1− ρ2

ρ1

ν2

ν1
)
]
(C + D)− ik2 ρ2

ρ1

ν2

ν1
E− α2

2
ρ2

ρ1

ν2

ν1
F=0, (19e)

[
2ν1k2 + i(1− ρ2

ρ1
)

gk
ω
− iω

]
A +

[
2ν1k2 − i(1− ρ2

ρ1
)

gk
ω
− iω

]
B−

[
2iν1kα1 − (1− ρ2

ρ1
)

gk
ω

]
C

+
[
2iν1kα1 + (1− ρ2

ρ1
)

gk
ω

]
D− ρ2

ρ1
(2ν2k2 − iω)E + 2i

ρ2

ρ1
ν2kα2F=0. (19f)
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The system (19) can be written as Mx = 0, where the column vector x holds A, B, C, D, E, F,
and the matrix M is 6× 6. The determinant of M is a function of the wave condition (ω, k),
given the physical properties of the fluids, i.e., det(M) = f (ω, k; g, h, ρ1, ν1, ρ2, ν2). For a
nontrivial x, the necessary and sufficient condition is det(M) = 0. This is the dispersion
equation for waves in the two-layer system; that is, given a frequency ω, det(M) = 0
determines the wavenumber kr and spatial attenuation rate ki due to the ice cover. The null
vector of M then gives A, B, C, D, E, F that are admissible for (ω, k).

When the WBL is neglected by assuming ν2 = 0 (α2 → ∞), it is necessary that
F = 0, since otherwise û2 in Equation (16a) becomes unbounded as z → 0− from below.
Consequently, Equation (8) for the continuity of u at z = 0 must be relaxed, since the
inviscid water is free to slip along the interface. Taking F = 0, ν2 = 0, and dropping
Equation (19c), one can verify that Equation (19) reduces to that given by Keller [6], which
was examined by the author in [17].

To efficiently explore the solutions given by Equation (19), we now introduce the
normalization based on the ice-layer thickness h, following [17]. Defining the dimensionless
frequency and complex wavenumber

ω̃ = ω
√

h/g, k̃ = kh, (20)

and reducing the homogeneous system to five equations for A, B, C, D, F by substituting E
using Equation (19d), we write the dimensionless dispersion equation as follows.

2ik̃2ek̃ −2ik2e−k̃ [α̃2
1 + k̃2]eα̃1 [α̃2

1 + k̃2]e−α̃1 0[
k̃2 + α̃2

1 + iRe
k̃
ω̃

]
ek̃ [

k̃2 + α̃2
1 − iRe

k̃
ω̃

]
e−k̃ [

Re
k̃
ω̃ − 2ik̃α̃1

]
eα̃1

[
Re

k̃
ω̃ + 2ik̃α̃1

]
e−α̃1 0

0 2ik̃ −k̃ + α̃1 −k̃− α̃1 k̃− α̃2
2ik̃2[1− γ] −2ik̃2[1− γ] α̃2

1 + k̃2 − 2k̃γ α̃2
1 + k̃2 − 2k̃γ iReω̃/Π0

k̃2 + α̃2
1 + iq k̃2 + α̃2

1 − iq −2ik̃α̃1 + q 2ik̃α̃1 + q −iγ[k̃ + α̃2]
2

= 0, (21)

where

α̃1 = α1h =

√
k̃2 − iω̃Re, α̃2 = α2h =

√
k̃2 − iω̃ReΠ1,

q = Re(1−Π−1
0 )k̃/ω̃ + iγ(k̃2 + α̃2

2), γ = 1/Π0Π1, (22)

and the dimensionless parameters

Π0 = ρ1/ρ2, Π1 = ν1/ν2, Re = h
√

gh/ν1 (23)

are, respectively, the density ratio, viscosity ratio, and Reynolds number based on the
ice-layer thickness and viscosity. The normalization does not affect x, since a multiple of x
(by a non-zero constant) still is a solution to the homogenous system. Once we compute x
for a pair (ω̃, k̃), we can then scale the velocity field as appropriate (see Section 3.3).

The Reynolds number Re compares the inertial force to the viscous force in the ice-
agglomeration layer [17]. The diffusion of vorticity in the ice layer is characterized by the
time scale τvis ∼ h2/ν1, whereas the time scale of fluid motion under the gravity wave may
be characterized by τine ∼ h/

√
gh in view of the thinness of the layer. Thus, Re = τvis/τine,

and Re < 1 indicates the flow regime where the time scale of vorticity diffusion is faster
than the inertial time scale of wave motion in the ice layer.

3. Results

In the simplest case of two layers of inviscid fluids of different densities, the classic
Lamb’s [21] solution shows that for each given ω, there are two modes of oscillations:
For a surface mode, the wave on the upper surface has a greater amplitude than that at
the interface, and the two waves are in-phase. For an interfacial mode, the greater wave
amplitude is at the interface and the two waves are out-of-phase by π. For two layers
of viscous fluids, Equation (21) still permits two types of oscillations for a given ω, but
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the interfacial mode (in the sense that the two waves are nearly π out-of-phase and the
greater wave amplitude is at the interface) has a complex wavenumber with a very large
attenuation rate ki. Such an interfacial wave cannot propagate far into the ice field, and
hence may not be relevant under the real conditions of sea ice and ocean waves. In the
discussions below, we therefore focus on the surface mode solutions. The dimensionless
dispersion Equation (21) simply reads f (ω̃, k̃; Π0, Π1, Re) = 0. Since the density ratio Π0
does not change significantly for ice and seawater, we will mainly examine the effects of ice
condition Re and viscosity ratio Π1, taking Π0 = 917/1025.

3.1. Dispersion Relation

The wavenumber–frequency relation, k̃r(ω̃), is primarily determined by the ice-layer
condition Re and insensitive to a change in the water viscosity (Figure 2a), essentially
following the solution with an inviscid water (Π1 = ∞ for ν2 = 0), which was previously
examined in [17]. For high ω̃, the wavelength becomes longer than its open-water (without
the ice) counterpart. Note that the open-water dispersion relation k̃ow = ω̃2 is practically
identical to the Lamb’s solution for two layers of inviscid fluids, since the density ratio
Π0 ' 1 (see the dashed curve in Figure 2a). The presence of WBL in water, however, can
significantly increase the wave attenuation rates k̃i at low ω̃ (Figure 2b). With a large ν2
(i.e., smaller Π1 for a given ν1) for a turbulent WBL, k̃i can be orders of magnitude greater
than with an inviscid water. The stronger effect on k̃i at low wave frequencies may be
interpreted as follows. The WBL is thicker for a lower frequency, as already indicated by
the Stoke layer thickness δ2. Thus, the total viscous dissipation from the boundary layer
can be greater. Furthermore, the dissipation due to ice is very small at low ω̃, making
the additional dissipation due to the WBL relatively important. By contrast, k̃i at high
ω̃ is dominated by the effect of ice. To give an example, for h = 0.1 m, ω̃ = 0.025 to 2
would correspond to wave periods T ' 25 to 0.3 s; with Re = 5 for an effective ice viscosity
ν1 ' 0.02 m2/s, Π1 = 10,000, 100, 10 are for the water viscosity ν2 ' 2 × 10−6, 2 × 10−4,
2 × 10−3m2/s, ranging from the molecular viscosity for laminar flows to the eddy viscosity
for turbulent flows.

ReRe = 5

(a) (b)

Figure 2. Dispersion relationship with Re = 5, varying the viscosity ratio Π1: (a) wavenumber k̃r(ω̃),
(b) the corresponding wave attenuation rate k̃i(ω̃). In (a), the dashed curve is Lamb’s solution for
two layers of inviscid fluids (ν1 = ν2 = 0) of different densities.

Fixing the viscosity ratio Π1 and varying Re, the k̃r–ω̃ relationship changes signifi-
cantly, while the attenuation profile k̃i(ω̃) follows a similar trend for moderate and low ω̃,
despite an increasing k̃i with a decreasing Re (Figure 3a,b). For sufficiently high ω̃, when
the attenuation rate becomes so high that the e-folding decay distance 1/ki is comparable
with the wavelength 2π/kr, the wave behaves more evanescent than propagating. This
is where k̃r tends to plateau and k̃i tends to vary very mildly with ω̃. In lab experiments,
Rabault et al. [14] used high frequencies ( f = 1.5–2.7 Hz) and relatively thick grease ice
(h ∼ 4 cm). Their data clearly show that the wavenumber becomes nearly invariant for
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f > 2.0 Hz, supporting the result of k̃r plateauing at high ω̃ in Figures 2a and 3a. A decrease
in Re could be caused by a greater ν1 or smaller h, or the combination of both. Varying h
will alter the correspondence between the dimensional and dimensionless frequency. While
this is not a mathematical concern, it is convenient to assume a fixed h when interpreting
the results in Figure 3a,b, so that all curves have the same ω̃-to-ω correspondence, making
the comparison straightforward. In that case, when we vary ν1 to change Re but keep Π1,
we imply that ν2 varies accordingly with ν1. In other words, the comparison of attenuation
profiles k̃i(ω̃) in Figure 3b shows the combined effects of increasing both ν1 and ν2. Recall
that k̃r(ω̃) is little affected by ν2 (Figure 2a). Noting that ReΠ1 = h

√
gh/ν2, we can examine

the effect of ν1 alone on ki by holding ReΠ1 constant while varying Re. This is shown in
Figure 3c for ReΠ1 = 20. It is seen that the ice viscosity has a stronger, more complex effect
on k̃i at high frequencies.

Re
Re
Re
Re

Re = 0.2
Re = 1
Re = 5

Re = 10

(a) (b)

Re

Re
Re
Re
Re

Re = 0.2
Re = 1
Re = 5

Re = 10

ReΠ1 = 20

(c)

Figure 3. (a) k̃r(ω̃), (b) k̃i(ω̃) with Π1 = 100 and varying Re. In (a), Lamb’s solution for inviscid
fluids is included as a reference (dashed black). (c) k̃i(ω̃), showing the effect of ice viscosity by
varying Re and keeping ReΠ1 constant (see text for explanation).

In studies of wave propagation over a mud layer (e.g., [22,23]), it has been shown
that with a sufficiently viscous mud layer, the wave damping rate tends to be the highest
when the mud layer thickness is of the same order as the Stokes layer thickness based
on the mud viscosity. By analogy, we plot ki/kow versus δ1/h, where the open-water
wavenumber kow = ω2/g and δ1 =

√
2ν1/ω; see Figure 4. A distinct peak (ki/kow)max is

clearly seen with a low Re, occurring at δ1/h ' 3.56, 1.69 for Re = 0.2, 1, respectively. Note
that δ1/h =

√
2/(Reω̃); thus, decreasing δ1/h corresponds to a decreasing wave period

for a given Re. As Re increases, the location of the peak rapidly shifts to δ1/h → 0; i.e.,
(ki/kow)max is only attainable at the limit of the zero wave period. The water viscosity
has little effect on the peak value or its location, since both remain virtually unchanged
as we vary Π1. The occurrence of (ki/kow)max seems to be related with the behavior of
the wavenumber tending to plateau when the frequency becomes sufficiently high for the
given ice condition. From δ1/h, we can estimate the ω̃ at which (ki/kow)max occurs, e.g.,
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ω̃ = 0.80, 0.70, 1.23, 1.52 for Re = 0.2, 1, 5, 10. It is then seen from Figure 3a that these
values of ω̃ mark the onset of k̃r(ω̃) plateauing for the appropriate Re.

Re
Re
Re
Re

<latexit sha1_base64="Wqcgw/Z1Lf9qSAshtw7AmMB6VME="></latexit>

Re = 0.2

Re = 1

Re = 5

Re = 10

Figure 4. ki/kow as a function of δ1/h with varying Re. For each Re, Π1 = 100 (solid), ∞ (dashed).

3.2. Comparison with Observations

When examining the existing two-layer models of ice overlaying inviscid water, e.g.,
a viscous ice [6] or viscoelastic ice [8], Yu et al. [17] considered a number of field and lab
datasets of wave attenuation rate from independent studies, including the Arctic ‘Sea State’
data [24,25], the Weddell Sea data [26], and experiments in wave tanks of various sizes
and under different ice conditions [27–29]. Yu et al. [17] demonstrated that the reduction
of data scattering in the dimensionless plane (k̃i, ω̃) leads to more consistent estimates of
effective ice-layer properties. However, over the range of frequencies spanning from field
to lab waves, models assuming an inviscid water cannot satisfactorily fit the data with one
single calibration of the ice properties. Specifically, for the model of viscous ice overlaying
inviscid water, fitting with a moderately low Re tends to underestimate the field data at
low frequencies, while that with a very low Re tends to overestimate the lab data at high
frequencies.

This motivated the recent works by Rogers et al. [30] and Yu et al. [13], who proposed
a new method to parameterize wave attenuation rate by sea ice in the dimensionless
plane (k̃i, ω̃). Analyzing a large dataset from the “Polynyas, Ice Production, and seasonal
Evolution in the Ross Sea” (PIPERS) field campaign [31–33], they obtained a monomial
fit k̃i = 0.1274ω̃4.5, i.e., in dimensional form ki = 0.1274(2π

√
g)4.5h1.25 f 4.5. (The PIPERS

dataset contains 8957 points of (ki, ω), obtained from the wave spectrum measurements
and then co-located with the satellite data of ice thickness; see [30,34] for details). Without
any further calibration, this 4.5-power formula agrees remarkably well with those other
field and lab datasets previously considered in [17], despite a slight under-prediction of the
lab datasets at high frequencies. The empirical nature of data-fitting, however, does not
elucidate the physics.

In Figure 5, these abovementioned field and lab datasets are replotted and compared
with the solution of Equation (21). In view of the findings in Figures 2b and 3b,c, we
anticipate that including the effect of the WBL in water will improve the predictions of
k̃i at low frequencies, hence reducing the bias previously seen in the solution with an
inviscid water [17]. Indeed, with Re = 5.3 and Π1 = 3/2, the theoretical solution of k̃i(ω̃)
is significantly better than that with an inviscid water (Π1 = ∞) when compared with
data over the range of frequencies for both field and lab waves. The 4.5-power empirical
formula given in [13] agrees well with the theoretical result using Re = 5.3 and Π1 = 3/2,
though a greater discrepancy is noted at high frequencies. As Yu et al. [13] remarked, the
4.5-power formula under-predicts the lab measurements, because it is calibrated solely
against the PIPERS field data. We can slightly modify the monomial fit to correct the bias at
high frequencies by a recalibration including other datasets, e.g.,

k̃i = 0.2805ω̃4.8, i.e., ki = 0.2805(2π/
√

g)4.8h1.4 f 4.8, (24)
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which is little different from the 4.5-power formula at low frequencies, but is less biased
in predicting the lab data; see Figure 5. The modified 4.8-power formula is seen to better
agree with the theoretical result that includes the effect of WBL. The agreement therefore
offers a possible physical basis for the empirical formula from data-fitting.

Re
Re

Re = 5.3, Π1 = 3/2
Re = 5.3, Π1 = ∞

Figure 5. Comparison of modeled wave attenuation with data. The field data at lower ω̃: PIPERS
dataset (bluish line segments joining the data points) with co-located satellite ice thickness (see [13,34]
for details); Arctic ‘Sea State’ dataset (larger symbols +, #,4 with various colors); two datasets for
the Weddell Sea (larger symbols × with color black and cyan). See [17] for h associated with the
‘Sea State’ and Weddell Sea data. The smaller symbols at higher ω̃ ( > 0.2) are the lab datasets with
documented ice thickness: green, three tests in [29]; blue, two tests in [28]; magenta, two tests in [27].

3.3. Wave Amplitudes and Velocity Distributions

Upon solving the dispersion equation (21), we compute the null vector x corresponding
to (k̃, ω̃), thus obtaining the admissible coefficients A, B, C, D, E, G for the velocities and
pressure in Equations (14)–(18). The waves on the upper free surface and at the interface
then follow from the kinematic conditions (6) and (9), respectively.

With the upper layer being viscous, the greater wave amplitude is still at the upper
surface for surface mode oscillations (as is the case of two inviscid fluids), but a phase
shift occurs and the wave at the interface begins to lag behind (Figure 6). For example,
for ω̃ = 0.6, ∆θη = θη1 − θη2 ' −0.039 with Re = 5, meaning that the interfacial wave
η2 lags the surface wave η1 by about 2.2◦; with Re = 1, the phase lag increases to 13.2◦.
This phase lag is a manifestation of the wave motion becoming rotational. The water
viscosity has an insignificant effect on |η̂1/η̂2| or ∆θη (see the results with Π1 = ∞ and 100
in Figure 6). When the upper ice layer is not so viscous or thin, e.g., Re = 5, |η̂1/η̂2| closely
follows Lamb’s solution for two layers of inviscid fluids, and the effect of ice viscosity
is mostly to cause the phase lag. At low ω̃, the phase lag increases with decreasing Re,
but for sufficiently high ω̃, ∆θη becomes very complex and highly dependent on Re. It
is particularly notable that for Re = 1, both |η̂1/η̂2| and ∆θη rapidly change for ω̃ > 0.6,
which seems to be associated with the behavior of k̃r(ω̃) shown in Figure 3a. For a highly
viscous and very thin ice layer, e.g., Re = 0.2, the amplitude ratio is fairly close to 1 and the
phase difference is small (with |η̂1/η̂2|max ' 1.1 and |∆θη |max ' 5.5◦ at some intermediate
frequencies). From the physical point of view, it seems reasonable to anticipate the difficulty
of developing differences between the two waves when the upper layer becomes so thin
and viscous.
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Re

Re

Re

Re = 5
Re = 1
Re = 0.2

(a) (b)

Figure 6. (a) Ratio of wave amplitude at the upper surface to that at the interface, |η̂1/η̂2|. (b) Phase
difference between the waves, ∆θη = θη1 − θη2 . For each Re, Π1 = ∞ (solid), 100 (dashed). For the
case of two inviscid fluids, Lamb’s solution of |η̂1/η̂2| is the black dotted curve in (a), while the waves
are in-phase; i.e., ∆θη = 0.

Examples are given in Figures 7 and 8 showing the vertical profiles of |û(z)| and |v̂(z)|.
Recall that the velocity amplitudes û(z) and v̂(z) are complex functions in z, containing the
phase relation between u and v. Here, we have scaled the velocities such that |v̂(z = 0)| = 1.
This implies a normalization of (u, v) using aω, where a is the characteristic wave amplitude
of η2, in view of Equation (9). In Figure 7, we examine the effect of the eddy viscosity of
water, by fixing the ice-layer condition Re while varying the ice-to-water viscosity ratio Π1.
The case of inviscid water (Π1 = ∞ for ν2 = 0) is included for comparison. In that case, û is
discontinuous at z = 0 since the water is free to slip, and for z < 0, the solution follows
that of an irrotational deep-water wave; i.e., |û2| = |v̂2| ∼ ekrz (see the results with Π1 = ∞
in Figure 7). We then show the effect of ice-layer viscosity in Figure 8 by varying Re, but
holding ReΠ1 constant to represent the situation of fixing ν2.

In the viscous ice layer, the horizontal velocity amplitude |û1| increases downward
towards the interface, in contrast to that of an irrotational linear wave, where |û| decreases
with depth. Since the water is less viscous than the upper ice layer, it can deform more
freely under similar stress. Thus, at the interface, the water does not tend to resist the
ice-layer flow. Instead, to compensate for its lower viscosity, the water velocity must
develop an appreciably larger gradient ∂u2/∂z in order to match the shear stress exerted
by the ice flow at z = 0+, as required by the conditions of continuity across the interface.
Immediately away from z = 0− downward, |û2| decreases much more rapidly than ekrz,
signifying the WBL in water. At the outer edge of the WBL and beyond, |û| ∼ ekrz, as
expected for the potential flow of the irrotational deep-water wave. The outer edge of the
WBL is characterized by an ‘overshoot’, where |û2| briefly decreases beyond the potential
flow solution before regaining and finally following it. Overshooting the targeted potential
flow solution when approaching it is a typical feature of an oscillatory boundary layer. This
vertical structure of |û(z)| remains qualitatively similar as we vary the frequency, although
for long waves, the changes in the velocity field are small over the thin depths in the ice
layer and WBL.

For a greater eddy viscosity in water (i.e., smaller Π1), which may represent the strong
mixing in a turbulent WBL due to intensified eddy activities, the velocity shear d|û2|/dz
becomes weaker as the boundary layer thickens, with its outer edge intruding into the
deeper depth. This reduces |û(z = 0)| at the interface and, consequently, affects the profile
|û1(z)| in the ice layer. Specifically, for a relatively high ω̃, the reduction of |û(z = 0)|
only affects the lower part of the ice layer, decreasing the shear d|û1|/dz in the depths
close to the interface, whereas near the upper surface, |û1| is little affected. For a low
ω̃, the reduction of |û(z = 0)| causes a decrease of |û1| in the entire ice layer because
the long-wave oscillation can penetrate a shallow layer/depth relative to the wavelength
without changing.
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(a) (b)

(c) (d)

Figure 7. Velocity amplitudes |û(z)| and |v̂(z)| with Re = 5 and varying Π1 to show the effects of
WBL in water under the ice: (a,b) ω̃ = 0.6, (c,d) ω̃ = 0.08.

Re
Re
Re

Re = 5
Re = 1
Re = 0.2

(a) (b)

Figure 8. Velocity amplitudes |û(z)| and |v̂(z)|, varying Re and keeping ReΠ1 = 500 to show the
effects of ice-layer viscosity: (a) ω̃ = 0.15, (b) ω̃ = 0.45. Solid curves: |û(z)|; dotted curves: |v̂(z)|.

The vertical velocity amplitude |v̂(z)| is little affected by the ice-layer viscosity or the
presence of WBL in water, and closely follows the solution for an irrotational deep-water
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wave (i.e., v̂ ∼ ekrz), except for a slight departure occurring in the ice layer when the wave is
short (e.g., ω̃ = 0.6); see Figure 7b,d. This is because v directly responds to the oscillations
of the upper surface and interface, and, therefore, to the dynamic pressure determined by
the irrotational component of the linear wave motion; see Equations (5), (9), (14c) and (16c).

For moderately low values of Re, varying ν1 while fixing ν2 has only mild effects on
|ū(z)| and virtually none on |v̄(z)|, regardless of the frequency; see the results with Re = 5
and 1 in Figure 8. For a highly viscous and thin ice layer, e.g., Re = 0.2, the velocity profiles
are noticeably different from those with Re > 1. (i) In the ice layer, |û1(z)| is considerably
reduced, in particular for high ω̃. However, most interesting is the shear d|û1|/dz. For a
relatively low frequency wave, d|û1|/dz < 0 remains similar to that with Re > 1; but for
sufficiently high ω̃, a zero shear, d|û1|/dz = 0, tends to occur at an intermediate depth
inside the ice layer, with a positive shear rate in the upper region close to the free surface.
Such a profile of |û1(z)| becomes much more pronounced for ω̃ > 0.5 with Re = 0.2. (ii) In
contrast to the cases with Re > 1, where the water velocity |û2| continuously decreases
inside the WBL, with Re = 0.2, |û2| first increases as we move away from z = 0−, reaches
a maximum, and then begins to decrease towards the potential flow solution at the outer
edge of the WBL; see the results with Re = 0.2 in Figure 8. For a high frequency (e.g.,
ω̃ = 0.45 with Re = 0.2), the thin WBL is mostly characterized by an increasing |û2| because
of the small interfacial velocity |û(z = 0)|. The water velocity gradient d|û2|/dz in the
vicinity of z = 0− is determined by the stress condition (10). For a very low Re (i.e., highly
viscous and thin ice layer), ν1∂v1/∂x (negative) can be great due to the large attenuation
rate ki, and dominates the total shear stress in the ice-layer flow, as û1 and d|û1|/dz both
become weak. Thus, to satisfy the stress conditions at z = 0, the requirement for the water
velocity gradient d|û2|/dz can be different from that with Re > 1. (iii) Despite the high
ice-layer viscosity, the vertical velocity |v̂1(z)| for a low frequency wave still closely follows
the variation ∼ ekrz and becomes more uniform in z for high frequencies. Weber [5] argued
that as the asymptotic limit of the ice layer is so thin and viscous, the horizontal motion is
mostly suppressed and the ice layer oscillates more or less freely in the vertical direction,
thus behaving like an inextensible surface film. Indeed, the solution of |û1| and |v̂1| with
Re = 0.2 in Figure 8b indicates that the two-layer fluid system approaches such a limit as
Re → 0.

The depth of the outer edge, z = −rδ2 where r is a constant may be used to estimate
the WBL thickness. For example, with an ice-layer condition Re = 5, corresponding to
the viscosity ratio Π1 = 1000, 100, 10, δ2/h =

√
2/(ReΠ1ω̃) = 0.0258, 0.0816, 0.2582 for

ω̃ = 0.6. From Figure 7a, we read rδ2/h ' 0.12, 0.40,1.4 for the corresponding Π1 and
therefore estimate r ∼ 4 to 6. For a low-frequency long wave ω̃ = 0.08 in Figure 7b, δ2/h
is greater, and so is the WBL thickness, but the estimate of r is similar. As in the example
given in Section 3.1, if h = 0.1 m and ν1 = 0.02 m2/s for Re = 5, the WBL thickness for a
wave of 1.1 s can be ∼0.14 m with an eddy viscosity ν2 = 0.002 m2/s in water.

3.4. Wave-Induced Reynolds Stress and Implication on the Steady Streaming

The time average of the product of linear flow velocities, uv, is the wave-induced
Reynolds stress, representing the mean momentum flux due to wave fluctuations [16]. For
irrotational linear waves, uv = 0 identically; i.e., u and v are not correlated since v leads u
by 90◦. When the wave motion becomes rotational under the effects of viscosity, the phase
relation between u and v is shifted and, consequently, uv 6= 0.

In the ice layer, v1 leads u1 by less than 90◦. As a result, uv > 0 for 0 < z/h < 1 and
decreases mildly from the upper surface to the interface (Figure 9). Inside the WBL and as
we move away from z = 0−, uv first decreases rapidly, reaches a negative peak (uvmin < 0),
and then returns to approach uv = 0 at the outer edge z ∼ −rδ2 and beyond in the inviscid
core. This vertical structure of uv is generally observed as we vary Re and Π1, as well as ω̃,
despite the differences in the magnitude of uv and in the thickness of WBL. Increasingly,
either ν1 or ν2 will increase uv for 0 < z/h < 1 in the ice layer. This is consistent with the
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fact that a major effect of viscosity is to induce a phase shift between the two waves and
affect the phase relation between u and v.

(a)

Re
Re
Re

Re = 5
Re = 1
Re = 0.2

(b)

Figure 9. (a) Wave-induced Reynolds stress uv for ω̃ = 0.08 with Re = 5 and varying Π1 to show the
effect of water viscosity. (b) uv for ω̃ = 0.15, varying Re and keeping ReΠ1 = 500 to show the effect
of ice-layer viscosity. In (a,b), u and v are normalized so that |v̂(z = 0)| = 1, as in Figures 7 and 8.

The Reynolds stress uv is a nonlinear quantity obtained from the linear wave theory,
therefore being of the second order in wave slope O(akr). However, it is physically signifi-
cant, since it is a driving force for the wave-induced mean flow. For waves on an open-water
surface, it is well understood that a steady flow must exist in order to provide a mean shear
stress to balance the wave-induced Reynolds stresses due to the viscous effects of wave
boundary layers at the surface and seabed [16]. This mean flow is called Eulerian steady
streaming, and when combined with the Stokes drift, gives the fluid particle (Lagrangian)
drift, i.e., the mass transport in water waves following [15].

While uv is a main driving force, determining the mean flow field necessitates a
formal nonlinear analysis to account for other processes, including the mean dynamic
pressure and momentum fluxes due to wave attenuation, nonlinear effects of surface,
and interface curvatures in the boundary and interface conditions, as well as the lateral
boundary conditions in the wave propagation direction (e.g., whether the system is closed
or open). Such a nonlinear analysis may be formulated using a method analogous to studies
of mass transport in water waves over a mud layer (e.g., [35,36]). That is beyond the scope
of this study, but we may nevertheless make a very preliminary speculation on steady
streaming based on uv.

When the wave amplitude is small relative to the thickness of the wave boundary
layer, the vorticity dynamics are dominated by viscous diffusion [15]. Assuming ∂/∂x ≡ 0,
i.e., a uniform condition in the wave propagation direction and negligible wave attenuation,
the equation for the streaming velocity ū may be written as [16]

ν
∂2ū
∂z2 =

∂ uv
∂z

. (25)

Suppose Equation (25) can be applied in the thin ice layer, and in the WBL at the interface.
We integrate it separately for 0 < z < h and z < 0 using the appropriate viscosity. Assuming
that (i) the mean stress vanishes outside the WBL, i.e., ν2∂ū2/∂z→ 0 for z� −rδ2; that (ii)
the continuity of mean stress at the interface can be approximated as

ρ1ν1
∂ū1

∂z
= ρ2ν2

∂ū2

∂z
at z = 0; (26)

and that (iii) the mean velocity is continuous at z = 0, i.e., ū1(0) = ū2(0) = ū(0), we obtain
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ū1 − ū(0)=ν−1
1

[ ∫ z

0
uv dz + (Π−1

0 − 1)uv|z=0 z
]

for 0 < z < h, (27a)

ū2 − ū(0)= ν−1
1 Π1

∫ z

0
uv dz for − rδ2 < z < 0. (27b)

Mathematical details are given in Appendix A. Equation (27b) is only valid inside the
WBL. At the outer edge z ∼ −rδ2, it provides a condition for determining the mean flow
field in the inviscid region z � −rδ2. The mean velocity ū(0) at the interface can be
determined with additional information, e.g., conditions at the upper surface, matching
at the outer edge of the WBL with the inviscid region (once the nonlinear analysis is
carried out), or constraints on the depth-integrated transport depending on the lateral
boundary conditions.

To explore the effects of Re and Π1, we can recast Equation (27) into the dimensionless
form by normalizing u, v using aω (or equivalently, |v̂(z = 0)|) as in Section 3.3. Sample
calculations are given in Figure 10 for a low frequency ω̃ = 0.08 such that the attenuation
rate k̃i is small and the wave propagation is approximately uniform in x. The factor a/h is
excluded from the calculations (see Appendix A). The calculations are for waves propagat-
ing in the +x direction. A few points are worth noting. (i) Relative to the interfacial mean
velocity ū(0), the streaming current in the WBL under the ice is much more pronounced,
clearly indicating that the phenomenon is related to the boundary layer flow because of the
high shear rate. (ii) Relative to ū(0), the streaming current in the ice layer is forward in the
direction of wave propagation, while immediately beneath the ice, it tends to be backward
in the WBL. (iii) For a smaller viscosity ratio, which may represent a turbulent WBL with a
large ν2 due to strong mixing, the backward relative streaming velocity occurs throughout
the WBL, and ū2 − ū(0) → 0 at the outer edge z ∼ −rδ2; in the ice layer, the forward
velocity ū1 − ū(0) becomes stronger (see the curve for Re = 5 and Π1 = 10 in Figure 10).
On the other hand, with a greater viscosity contrast,ū2 − ū(0) reverses direction and be-
comes forward inside the WBL. The larger the viscosity ratio is (e.g., due to increasing ν1
while keeping ν2), the stronger the backward relative streaming velocity becomes under
z = 0−, but a weaker forward ū2 − ū(0) is reached at the outer edge; see the results with
Re = 5, Π1 = 100, and with Re = 1, Π1 = 500 in Figure 10. Furthermore, ū1 − ū(0) ' 0,
indicating that in an average sense, the water feels the ice layer as if it were a deformable
’solid plate’ rather than a fluid layer because of the great contrast in their viscosities. (iv)
A large mean shear dū2/dz in the WBL is theoretically expected for a large Π1 because
of the stress condition at the interface, but may be unattainable in real fluids since shear
instability would most likely occur. The subsequent, enhanced mixing would certainly alter
the streaming velocity profile, likely towards one similar to that with a smaller Π1. (v) At
the outer edge of the WBL, ū2 tends to be uniform and remains so just outside, in the region
where the depth is greater than rδ2, but it is still small compared with the wavelength.
This allows matching with the mean flow in the inviscid core where the length scale of the
flow is characterized by the wavelength. For a complete determination of the profile ū2(z)
outside the WBL, one needs to carry out nonlinear analysis for the inviscid core.

While these are speculations based on crude assumptions and will likely be revised
by a rigorous analysis, there seems to be some relevance. Processing their PIV data using
proper orthogonal decomposition, Rabault et al. [14] showed the existence of a mean water
flow under the grease-ice layer in the opposite direction of wave propagation. In an earlier
study, Martin and Kauffman [37] also indicated a backward flow at the ice–water interface
when illustrating the mean circulation in grease ice with an increasing thickness towards
the beach-end of the wave tank. Rabault et al. argued that the back-flow may be due to the
packing of ice, which, as a consequence of mass conservation, causes a counter-current of
water in the opposite direction. However, on the other hand, ice piling up in itself can be
an indication of a forward drifting current in the upper layer, relative to the water. From
the discussion above in (iv), a mean flow profile with a smaller viscosity ratio is likely
to be observed, in view of the shear-induced mixing. Taking, for example, the case with
Re = 5 and Π1 = 10 in Figure 10, we may argue that ū(z = 0) is nearly zero or at least
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very small, since in the case of deep water depth, we expect ū2 → 0 for z � −rδ2, and it
already happens that ū2 − ū(0) ∼ 0 at z ∼ −rδ2. Thus, we see that under the combined
effects of ice and water viscosities, the wave-induced Reynolds stress can drive a forward
streaming in the upper ice layer and a backward, relatively strong streaming in the water
just underneath the ice.

Re

Re

Re

Re = 5, Π1 = 100

Re = 5, Π1 = 10

Re = 1, Π1 = 500

Figure 10. Steady streaming velocity relative to ū(z = 0) for ω̃ = 0.08. See text for explanation.

4. Summary and Concluding Remarks

We have re-considered the problem of linear waves on ice-covered seawater, with a
particular interest in the effects of the wave boundary layer (WBL) in the water just under-
neath the ice. The thin, viscous upper layer is a mathematical representation of the soupy
ice-agglomeration in marginal ice zones, and is treated as a Newtonian incompressible fluid.
The seawater viscosity is only important in the WBL because of the high shear rate in the
velocity field there. Outside the WBL, the wave motion is essentially inviscid and the water
depth is deep. While existing studies tend to focus on the dispersion relation, in particular,
the wave attenuation by ice, we have paid special attention to the velocity distributions
in the ice-layer flow and the boundary water flow, the Reynolds stress induced by the
linear wave fluctuations, and its implication on Eulerian steady streaming. Key results are
summarized, as follows.

(i) The presence of a WBL under the ice layer can significantly affect the theoretical
result of the wave attenuation rate at low frequencies, and therefore has a stronger im-
plication in large-scale applications. With a reasonable value of water eddy viscosity, the
theoretical solution agrees very well with the observed attenuation rates over a large range
of frequencies covering both field and lab waves, significantly outperforming the previous
result assuming an inviscid water. It also offers a possible physical basis for the recently
proposed empirical formula of wave attenuation that explicitly incorporates dependence
on ice thickness, but is obtained from data-fitting [13]

(ii) Under the ice, the WBL in water is enhanced and can have a thickness comparable
to the ice-layer thickness, even for short waves of high frequencies. Varying either the
effective ice-layer viscosity or water eddy viscosity can alter the fluid velocity profiles in
both the ice layer and WBL, because of the continuity of stresses and velocities across the
interface. While the WBL is thicker for low frequencies and therefore causes a greater
total dissipation, the shear rate is much stronger in the thinner boundary layer of a high
frequency wave and can be subject to instabilities. When the ice layer is so thin and so
viscous that the time scale of vorticity diffusion in the ice flow is faster than the inertial time
scale of wave motion, the horizontal ice-flow velocity is greatly restricted at sufficiently
high frequencies, and asymptotically, the ice layer behaves as an inextensible thin surface
film; the water velocity in the WBL exhibits a more complex vertical structure.

(iii) The effects of viscosities modify the phase relation between the horizontal and
vertical velocity of the linear flow, such that a Reynolds stress distribution is established
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in the ice layer and WBL. This mean momentum flux due to wave fluctuations drives the
secondary induced mean flow. Speculation based on crude assumptions indicates that,
relative to the ice–water interface, the steady streaming in the upper ice layer is forward in
the direction of wave propagation, while in the WBL just underneath the ice, a backward
streaming current tends to occur.

While we have briefly remarked on the qualitative similarity between some features of
the theoretical flow field and observations, an in-depth comparison needs to be conducted,
for example, using the PIV measurements from the large-scale wave tank experiments at
the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory
(CRREL), which is an ongoing NRL study [38].

Since linear solutions are often applied in practical problems and are the first step
in nonlinear analyses, the results of this study will contribute to the literature and guide
applications. The analysis in this study is for monochromatic waves, but can be extended
to random waves. Still, the results here can shed some lights on spectral waves interacting
with sea ice. For instance, the ice thickness is expected to be thin near the ice edge, where
high frequency waves likely survive and contribute considerably to the total wave energy,
whereas low frequency waves can penetrate far into ice fields of greater thickness and likely
dominate the wave energy spectrum there. Thus, the behavior of the theoretical solution,
according to the dimensionless frequency normalized using the ice thickness, can inform
wave–ice interactions in those different regions.

For the nonlinear analysis aiming at the Lagrangian mass transport in the two layers of
fluids, one can in principle follow the approaches in the literature, e.g., using the Lagrangian
description of the flow equations for both fluids (e.g., [35]) or an orthogonal curvilinear
coordinate system (e.g., [36]). This will relax the constraint on the wave amplitude, which
is a strong limitation when applying a linear wave theory. In such a nonlinear analysis,
the effects of surface and interface curvatures will be properly accounted for and can
be significant, given the important role played by the interface conditions in facilitating
wave–ice interactions, as we have seen in this study. Wave attenuation is another cause
of mean momentum flux and can strongly influence the mean flow field in regions where
high frequency waves are active.
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Appendix A

Integrating Equation (25) once in the water layer, we obtain

ν2
∂ū2

∂z
= uv + c2 for z < 0, (A1)
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where c2 is the constant of integration. Since uv→ 0 for z� −rδ2 (Figure 9), the condition
of vanishing mean stress outside the WBL, i.e., ν2∂ū2/∂z→ 0 for z� −rδ2, leads to c2 = 0.
Integrating Equation (A1) from z = 0 to z < 0 inside the WBL, and noting that ν2 = ν1/Π1,
we obtain Equation (27b).

Integrating Equation (25) once in the ice layer, we obtain

ν1
∂ū1

∂z
= uv + c1 for 0 < z < h. (A2)

From the continuity of mean stress at the interface, i.e., Equation (26), we obtain

c1 = (Π−1
0 − 1)uv|z=0. (A3)

Recall that Π0 = ρ1/ρ2 and uv is continuous at z = 0 (Figure 9). Integrating Equation (A2)
from z = 0 to z > 0 in the ice layer, we obtain Equation (27a). Here, we have used the
condition ū1(0) = ū2(0) = ū(0), i.e., ū is continuous at z = 0.

Normalizing (u, v) by aω where a is the characteristic wave amplitude of η2 as in
Section 3.3 and using the definitions of ω̃ and Re, we rewrite Equation (25) into the dimen-
sionless form,

¯̃u1 − ¯̃u(0)=
a
h

ω̃Re

[ ∫ z̃

0
ũṽ dz̃ + (Π−1

0 − 1)ũṽ|0 z̃
]

for 0 < z̃ < 1, (A4a)

¯̃u2 − ¯̃u(0)=
a
h

ω̃ReΠ1

∫ z̃

0
ũṽ dz̃ for − rδ2/h < z̃ < 0, (A4b)

where (ũ, ṽ) = (u, v)/aω and z̃ = z/h.

References
1. Weitz, M.; Keller, J.B. Reflection of water waves from floating ice in water of finite depth. Commun. Pure Appl. Math. 1950, 3,

305–318. [CrossRef]
2. Squire, V.A.; Fox, C. On ice coupled waves: A comparison of data and theory. In Advances in Ice Technology, Proceedings of

3rd International Conference on Ice Technology; Murthy, T.K., Sackinger, W.M., Wadhams, P., Eds.; Computational Mechanics
Publications: Southampton, UK, 1992; pp. 269–280.

3. Fox, C.; Squire, V.A. On the oblique reflexion and transmission of ocean waves from shore fast sea ice. Philos. Trans. R. Soc. Lond.
A 1994, 347, 185–218.

4. Mosig, J.E.M; Montiel, F.; Squire, V.A. Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered seas. J.
Geophys. Res. Oceans 2015, 120, 6072–6090. [CrossRef]

5. Weber, J.E. Wave attenuation and wave drift in the marginal ice zone. J. Phys. Oceanogr. 1987, 17, 2351–2361. [CrossRef]
6. Keller, J.B. Gravity waves on ice-covered water. J. Geophys. Res. 1998, 103, 7663–7669. [CrossRef]
7. De Carolis, G.; Desiderio, D. Dispersion and attenuation of gravity waves in ice: A two-layer viscous fluid model with

experimental data validation. Phys. Lett. A 2002, 305, 399–412. [CrossRef]
8. Wang, R.; Shen, H.H. Gravity wave propagating into an ice-covered ocean: A viscoelastic model. J. Geophys. Res. Oceans 2010,

115, C06024. [CrossRef]
9. Zhao, X.; Shen, H.H. Three-layer viscoelastic model with eddy viscosity effect for flexural-gravity wave propagation through ice

cover. Ocean Model. 2018, 131, 15–23. [CrossRef]
10. Sutherland, G.; Rabault, J.; Christensen, K.H.; Jensen, A. A two layer model for wave dissipation in sea ice. Appl. Ocean Res. 2019,

88, 111–118. [CrossRef]
11. Shen, H.H. Modelling ocean waves in ice-covered seas. Appl. Ocean Res. 2019, 83, 30–36. [CrossRef]
12. Squire, V.A. Ocean wave interactions with sea ice: A reappraisal. Annu. Rev. Fluid Mech. 2020, 52, 37–60. [CrossRef]
13. Yu, J.; Rogers, W.E.; Wang, D.W. A new method for parameterization of wave dissipation by sea ice. Cold Reg. Sci. Technol. 2022,

199, 103582. [CrossRef]
14. Rabault, J.; Sutherland, G.; Jensen, A.; Christensen, K.H.; Marchenko, A. Experiments on wave propagation in grease ice:

Combined wave gauges and particle image velocimetry measurements. J. Fluid Mech. 2019, 864, 876–898. [CrossRef]
15. Longuet-Higgins, M.S. Mass transport in water waves. Philos. Trans. R. Soc. Lond. A 1953, 245, 535–581.
16. Mei, C.C. The Applied Dynamics of Ocean Surface Waves; World Scientific: Singapore, 1989.
17. Yu, J.; Rogers, W.E.; Wang, D.W. A scaling for wave dispersion relationships in ice-covered waters. J. Geophys. Res. Oceans 2019,

124, 8429–8438. [CrossRef]

http://doi.org/10.1002/cpa.3160030306
http://dx.doi.org/10.1002/2015JC010881
http://dx.doi.org/10.1175/1520-0485(1987)017<2351:WAAWDI>2.0.CO;2
http://dx.doi.org/10.1029/97JC02966
http://dx.doi.org/10.1016/S0375-9601(02)01503-7
http://dx.doi.org/10.1029/2009JC005591
http://dx.doi.org/10.1016/j.ocemod.2018.08.007
http://dx.doi.org/10.1016/j.apor.2019.03.023
http://dx.doi.org/10.1016/j.apor.2018.12.009
http://dx.doi.org/10.1146/annurev-fluid-010719-060301
http://dx.doi.org/10.1016/j.coldregions.2022.103582
http://dx.doi.org/10.1017/jfm.2019.16
http://dx.doi.org/10.1029/2018JC014870


J. Mar. Sci. Eng. 2022, 10, 1472 19 of 19

18. Dolatshah, A.; Nelli, F.; Bennetts, L.G.; Alberello, A.; Meylan, M.H.; Monty, J.P.; Toffoli, A. Hydroelastic interactions between
water waves and floating freshwater ice. Phys. Fluids 2018, 30, 091702. [CrossRef]

19. Kalyanaraman, B.; Meylan, M.H.; Bennetts, L.G.; Lamichhane, B.P. A coupled fluid-elasticity model for the wave forcing of an
ice-shelf. J. Fluids Struct. 2020, 97, 103074. [CrossRef]

20. Selvan, S.A.; Ghosh, S.; Behera, H.; Meylan, M.H. Hydroelastic response of a floating plate on the falling film: A stability analysis.
Wave Motion 2021, 104, 102749. [CrossRef]

21. Lamb, H. Hydrodynamics; Cambridge University Press: Cambridge, UK, 1932.
22. Dalrymple, R.A; Liu, P. L.-F. Waves over soft muds: A two-layer fluid model. J. Phys. Oceanogr. 1978, 8, 1121–1131. [CrossRef]
23. Ng, C.-O. Water waves over a muddy bed: A two-layer Stokes’ boundary layer model. Coast. Eng. 2000, 40, 221–242. [CrossRef]
24. Rogers, W.E.; Thomson, J.; Shen, H.H.; Doble, M.J.; Wadhams, P.; Cheng, S. Dissipation of wind waves by pancake and frazil ice

in the autumn Beaufort Sea. J. Geophys. Res. Oceans 2016, 121, 7991–8007. [CrossRef]
25. Cheng, S.; Rogers, W.E.; Thomson, J.; Smith, M.; Doble, M.J.; Wadhams, P.; Kohout, A.L.; Lund, B.; Persson, O.P.G.; Collins, C.O., III;

et al. Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone. J. Geophys. Res. Oceans
2017, 122, 8770–8793. [CrossRef]

26. Doble, M.; De Carolis, G.; Meylan, M.H.; Bidlot, J.-R.; Wadhams, P. Relating wave attenuation to pancake ice thickness, using field
measurements and model results. Geophys. Res. Lett. 2015, 42, 4473–4481. [CrossRef]

27. Newyear, K.; Martin, S. A comparison of theory and laboratory measurements of wave propagation and attenuation in grease ice.
J. Geophys. Res. 1997, 102, 25091–25099. [CrossRef]

28. Wang, R.; Shen, H.H. Experimental study on surface wave propagating through a grease-pancake ice mixture. Cold Reg. Sci.
Technol. 2010, 61, 90–96. [CrossRef]

29. Zhao, X.; Shen, H.H. Wave propagating in frazil/pancake, pancake, and fragmented ice covers. Cold Reg. Sci. Technol. 2015, 113,
71–80. [CrossRef]

30. Rogers, W.E.; Yu, J.; Wang, D.W. Incorporating Dependence on Ice Thickness in Empirical Parameterizations of Wave Dissipation by Sea
Ice; NRL Technical Report NRL/OT/7320-21-5145; U.S. Naval Research Laboratory: Washington, DC, USA, 2021; 35p.

31. Kohout, A.L.; Williams, M.J.M. Antarctic Wave-Ice Observations during PIPERS; NIWA Client Report 2019060CH Prepared for the
Deep South Challenge; National Institute of Water and Atmospheric Research: Auckland, New Zealand, 2019.

32. Ackley, S.F.; Stammerjohn, S.; Maksym, T.; Smith, M.; Cassano, J.; Guest, P.; Tison, J.-L.; Delille, B.; Loose, B.; Sedwick, P.;
et al. Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field
campaign. Ann. Glaciol. 2020, 61, 181–195. [CrossRef]

33. Kohout, A.L.; Smith, M.; Roach, L.A.; Williams, G.; Montiel, F.; Williams, M.J.M. Observations of exponential wave attenuation in
Antarctic sea ice during the PIPERS campaign. Ann. Glaciol. 2020, 61, 196–209. [CrossRef]

34. Rogers, W.E.; Meylan, M.H.; Kohout, A.L. Estimates of spectral wave attenuation in Antarctic sea ice, using model/data inversion.
Cold Reg. Sci. Technol. 2021, 182, 103198. [CrossRef]

35. Ng, C.-O. Mass transport and set-ups due to partial standing surface waves in a two-layer viscous system. J. Fluid Mech. 2004,
520, 297–325. [CrossRef]

36. Wen, J.; Liu, P. L.-F. Mass transport of interfacial waves in a two-layer fluid system. J. Fluid Mech. 1995, 297, 231–254. [CrossRef]
37. Martin, S.; Kauffman, P. A field and laboratory study of wave damping by grease ice. J. Glaciol. 1981, 27, 283–313. [CrossRef]
38. Orzech, M.; Yu, J.; Wang, D.W.; Landry, B.J.; Zuniga-Zamaloa, C.C.; Braithwaite, E.; Trubac, K.; Gray, C. Laboratory measurements

of surface wave propagation through ice floes in salt water. J. Mar. Sci. Eng. 2022, in press. [CrossRef]

http://dx.doi.org/10.1063/1.5050262
http://dx.doi.org/10.1016/j.jfluidstructs.2020.103074
http://dx.doi.org/10.1016/j.wavemoti.2021.102749
http://dx.doi.org/10.1175/1520-0485(1978)008<1121:WOSMAT>2.0.CO;2
http://dx.doi.org/10.1016/S0378-3839(00)00012-0
http://dx.doi.org/10.1002/2016JC012251
http://dx.doi.org/10.1002/2017JC013275
http://dx.doi.org/10.1002/2015GL063628
http://dx.doi.org/10.1029/97JC02091
http://dx.doi.org/10.1016/j.coldregions.2010.01.011
http://dx.doi.org/10.1016/j.coldregions.2015.02.007
http://dx.doi.org/10.1017/aog.2020.31
http://dx.doi.org/10.1017/aog.2020.36
http://dx.doi.org/10.1016/j.coldregions.2020.103198
http://dx.doi.org/10.1017/S0022112004001624
http://dx.doi.org/10.1017/S0022112095003077
http://dx.doi.org/10.1017/S0022143000015392
http://dx.doi.org/10.3390/jmse10101483

	Introduction
	Mathematical Formulation
	Results
	Dispersion Relation
	Comparison with Observations
	Wave Amplitudes and Velocity Distributions
	Wave-Induced Reynolds Stress and Implication on the Steady Streaming

	Summary and Concluding Remarks
	Appendix A
	References

