
EGU23-2453

A MATLAB/GNU Octave toolbox for computation of velocity and strain

rate field from GNSS coordinate time series

by Giordano Teza et al.

Supplementary material:

User’s guides:

• StaVel

• GridStrain

StaVel

A MATLAB/GNU Octave toolbox for the computation of the

velocity of a network of GNSS stations starting from a database of

coordinate time series

Release 1.0 – December 2022

User’s guide

Giordano Teza Arianna Pesci
Department of Physics and Astronomy,

Alma Mater Studiorum University of Bologna

Istituto Nazionale di Geofisica e Vulcanologia, Bologna,

Italy
Viale Berti Pichat, 6/2, I-40127 Bologna, Italy Via Creti, 1, I-40128 Bologna, Italy

giordano.teza@unibo.it, giordano.teza@gmail.com arianna.pesci@bo.ingv.it

mailto:giordano.teza@unibo.it
mailto:giordano.teza@gmail.com
mailto:arianna.pesci@bo.ingv.it

 2

Table of contents

1. Introduction ... 3

1.1 The StaVel toolbox .. 3

1.2 Tips for a quick approach to StaVel .. 4

1.3 Disclaimer ... 4

2. Toolbox installation and program running .. 5

3. Input and output data ... 6

3.1 Input data .. 6

3.2 Automatic importation of GNSS time series from a database (GetNevada function) 7

3.3 tsData object and input/output data .. 8

3.4 Other output files .. 12

4. Main StaVel functions ... 15

4.1 Choice of StaVel general options: geneOpts function .. 15

4.2 The main StaVel function: StaVelMain ... 17

4.3 Inspecting the coordinate time series: the InspectOffsetSearch function. 20

4.4 Removal of time series segments: the tsSegmentRemoval function 21

4.5 Common Mode Error filtering: the CMEstackFiltering function 22

4.6 Exporting the StaVel results to GridStrain: the geneGSFile function 24

5. Tutorial .. 26

5.1 Download of time series from Nevada Geodetic Laboratory ... 27

5.2 Generation of tsData objects and raw mom files .. 27

5.3 Download of data about offsets, inspection of the results, search of possible other offsets and

generation of observation mom files... 28

5.3.1 Direct use of InspectOffsetSearch. ... 29

5.3.2 Calling InspectOffsetSearch from StaVelMain ... 31

5.3.3 Removal of time series segments.. 32

5.4 Outlier recognition, trend computation and evaluation of results... 33

5.5 Velocity exportation to GridStrain .. 34

6. List of StaVel MATLAB functions ... 36

7. References .. 38

 3

1. Introduction

1.1 The StaVel toolbox

StaVel is a MATLABTM toolbox, described in Teza et al. (2022), which is conceived for an easy

and quick calculation of the velocities of some GNSS stations starting from the corresponding

coordinate time series. It is the first component of a toolbox aimed at computing the strain rate field

starting from the coordinate time series of some GNSS station. The second component, whose input

data are the velocities obtained by means of StaVel, is GridStrain (for more information about

the second component, please see the GridStrain user’s guide. GridStrain is an improved

version of grid_strain, described in Teza et al., 2008). The complete workflow (StaVel and

GridStrain) is shown in Fig. 1.1. A first application of these toolboxes, which at that time were

not yet complete, is shown in Meschis et al. (2022). StaVel is described in detail in this user’s

guide. For more information about GridStrain, please refer to the corresponding user’s guide.

Figure 1.1. workflow of the whole process. StaVel is developed in order to carry out

the steps inside the left, dashed rectangle (computations for each station). The

computations carried out for each grid node, shown in the right, dotted rectangle, are

carried out by means of GridStrain. The database interrogation is also carried out by

means of StaVel.

These steps are carried out by means of StaVel:

• download of the time series of the selected GNSS stations from a data repository or,

alternatively, access to a database of time series. Availability of time series provided by

RINEX data processing is a precondition for the procedure described here;

• for each coordinate time series of each station:

o offset recognition or offset importation from a database;

o outlier recognition and modeling;

o velocity computation based on Maximum Likelihood Estimation (MLE), carried out by

means of the external software package Hector (Bos et al., 2013), automatically called

by a MATLAB function (for other details about download and installation of Hector,

please see Chapter 2);

o (optional, if the estimation and removal of the common mode error, CME, is required):

× time series detrending, CME estimation and its removal from time series;

× MLE-based velocity computation with the CME-filtered time series.

 4

The input and output data are described in the next chapters. An ASCII file which can directly

managed by means of GridStrain can be generated by StaVel as the velocities are computed.

These steps are carried out by means of GridStrain (please see the corresponding user’s guide):

o strain rate field computation with the MLS method for one or more scale factors,

including the computation of first and second invariant of the strain and of normalized

shear;

o strain rate field visualization and interpretation.

The toolbox surely runs with all possible functionalities under MATLABTM 2018a or later

releases. Some actions aimed at allowing use with much older versions of MATLAB were however

implemented. For example, whether a figure is an object or not is automatically verified.

The toolbox can also run under GNU Octave. In this case, some functions must be used

by means of command line because the user interface controls could be incompatible with such

a free package. These cases are highlighted both in this User’a Guide and in the corresponding

function helps. An example of such a function is the main StaVel function, i.e. StaVelMain,

described in Chapter 4. The corresponding help can be shown by typing

help StaVelMain

on the MATLAB Command Window (MCW), or the equivalent in Octave.

For any question, or also suggestion, please contact the authors (the Email addresses are shown

in the cover of this user’s guide).

1.2 Tips for a quick approach to StaVel

Given that this guide requires reading the article Teza et al. (2022), the quick approach is reading the

very short Chapter 2, reading Subsection 3.1 about the input files and taking a quick look at Section

3.2, then moving onto Chapter 5 (Tutorial), reserving the rest of Chapter 3 and Chapter 4 for further

information and, above all, to understand how to set the inputs of the various functions used.

Moreover, it is necessary to read the facts highlighted at the conclusion of Subsection 4.2 about the

main function of StaVel, i.e. StaVelMain. If the user is interested in common mode error

(CME) filtering, he should refer to Subsection 4.5.

Some files are also provided for tutorial purposes. The user is invited to elaborate the data also

taking into account what is highlighted in Subsection 4.2.

1.3 Disclaimer

This toolbox is free. The authors require that the use of this software be intended for scientific

use only (no commercial use). If a publication whose results were obtained by means of this

software is accepted for the publication, the toolbox StaVel and their authors must be cited.

Disclaimer: The authors of this toolbox accept no responsibility for damages resulting from the

use of these products and makes no warranty or representation, either express or implied,

including but not limited to, any implied warranty of merchantability or fitness for a particular

purpose. This software is provided "AS IS", and the user assumes all risks when using it.

 5

2. Toolbox installation and program running
The toolbox StaVel is contained in the zip file StaVel.zip. The files should be extracted and

saved in a MATLAB directory whose name should be StaVel. For example, if the MATLAB

work directory is:

C:\Users\john.doe\Documents\MATLAB\,

the toolbox can be saved and accessed with this path:

C:\Users\john.doe\Documents\MATLAB\StaVel.

Please note that, if MATLAB operates under an Unix environment, “/”must be used instead of “\”.

If the directory StaVel is saved in the default directory on which MATLAB command window

operates, the directory change must be carried out before the toolbox run. This change is obtained

simply typing on the MCW:

cd StaVel

In order to call the program whichever is the current MCW directory, a startup file can be

written by the user. For example, if the toolbox is placed in the directory

‘C:\Users\john.doe\Documents\MATLAB\StaVel’, the rows

addpath 'C:\Users\john.doe\Documents\MATLAB\StaVel’;

should be added to the startup.m script. If a file named startup.m is placed in the MATLAB

work directory, it is automatically executed at each MATLAB start. In this way, all the defined

search paths are automatically added at each MATLAB start and the directory changes to use the

toolbox are unnecessary. The functionalities of these toolboxes do not depend on user’s choice about

the startup. More information about addpath function in a startup file can be found in

http://www.mathworks.it/it/help/matlab/ref/ addpath.html.

Another option is the use of the Set Path dialog box, which appears by typing

pathtool

on the MCW or by selecting Set Path in Home menu of MATLAB desktop. The button Add

Folders allows the choice of the folder and other buttons allow the choice of the folder order for

the search of the files. Please see http://www.mathworks.it/it/help/matlab/matlab_env/using-the-

matlab-search-path.html to have more information about the Set Path dialog box.

All provided functions are MATLAB .m files that can the opened and, if necessary, modified

by the user. In this way, an expert user can modify, for example, the data saving options.

The toolbox calls an external free, open source software package, i.e. Hector (Bos et al.,

2013). It is a high-performance, frequently upgraded package which runs under Linux. Hector must

be separately downloaded and installed (current download page: http://segal.ubi.pt/hector/).

Moreover, Hector runs under Linux regardless to the operating system (OS) used by MATLAB. If

the OS is Windows, the automatic Hector call by MATLAB requires the Windows Subsystem for

Linux 2 (WSL2). As Hector is installed, i.e. its executable files are placed in the chosen folder, this

folder is managed by editing the corresponding row of geneOpts function (see Chapter 4).

Besides StaVel functions and scripts, some sample files are added for tutorial purposes in

the file StaVel.zip.

http://www.mathworks.it/it/help/matlab/ref/%20addpath.html
http://www.mathworks.it/it/help/matlab/matlab_env/using-the-matlab-search-path.html
http://www.mathworks.it/it/help/matlab/matlab_env/using-the-matlab-search-path.html

 6

3. Input and output data

3.1 Input data

Input data are coordinate time series, with time, East, North and Vertical, in this order, taken from

Nevada Geodetic Laboratory (NGL) database (Blewitth et al., 2018) or from another similar

database whose data are managed in the same way. The possible formats, correctly read by

StaVel, are tenv3, tenv and kenv, which are described in

http://geodesy.unr.edu/gps_timeseries/README_tenv3.txt for tenv3 format,

http://geodesy.unr.edu/gps_timeseries/README_tenv.txt for tenv format and, finally,

http://geodesy.unr.edu/gps_timeseries/README_kenv.txt for the kenv format. All these files are

ASCII files.

Figure 3.1 Example of data from NGL database (23-columns tenv3)

An example of tenv3 data is shown in Figure 3.1. In accordance with the instructions

provided in the NVL site, a row should be read in this way (first row shown in Fig. 3.1):

Table 3.1 Meaning of the data of a tenv3 file

column Sample value Meaning

1 BOLG station name (Bologna, Italy. Complete name: BOLG00ITA)

2 22SEP04 Date in the form YYMMMDD (4 September 2022)

3 2022.6749 decimal year in the form yyyy.yyyy

4 59826 modified Julian day (MJD)

5 2226 GPS week

6 0 day of GPS week

7 11.4 longitude (degrees) of reference meridian

8 -3437 eastings (m), integer portion (from ref. meridian)

9 -0.850160 eastings (m), fractional portion

10 4929405 northings (m), integer portion (from equator

11 -0.013671 northings (m), fractional portion

12 99 vertical (m), integer portion

13 0.613264 vertical (m), fractional portion

14 1.0350 antenna height (m) assumed from RINEX header

15 0.000945 east sigma (m)

16 0.000876 north sigma (m)

17 0.002770 vertical sigma (m)

18 -0.074947 east-north correlation coefficient

19 0.136729 east-vertical correlation coefficient

20 -0.012292 north-vertical correlation coefficient

21 44.5002195155 latitude(deg)

22 -348.6432215960 longitude(deg)

23 99.61326 height(m)

Please note that for some stations there are 20 columns instead of 23. The function for the

data downloads automatically recognizes the kind of file and, in the case of a tenv3, the number

of valid columns.

http://geodesy.unr.edu/gps_timeseries/README_tenv3.txt
http://geodesy.unr.edu/gps_timeseries/README_tenv.txt
http://geodesy.unr.edu/gps_timeseries/README_kenv.txt

 7

3.2 Automatic importation of GNSS time series from a database (GetNevada function)

Under the conditions that the input GNSS files are taken from the NGL database or from a

database whose files are as in NGL, if a list of stations is defined, the corresponding

tenv3/tenv/kenv files can be downloaded in an entirely automatic way. The function which

carries out this is GetNevada, whose syntax is:

StatStatus = GetNevada(fileStations,PlateID,OutDir,AddName,Ext)

This function allows the time series download for the GNSS stations whose standard 4-length

names (e.g. BOLG for the station BOLG00ITA, i.e. Bologna, Italy) are placed in the first column

of the .xlsx/.xls file fileStations, from the second to the last row (the first row is the

header) or on the only column of the ASCII file fileStations.

If fileStations is undefined or empty, it can be interactively chosen.

If PlateID is undefined, empty or is invalid (see below for the valid PlateIDs), an

interactive box allows the choice of the kind of time series to be downloaded (IGS14 ENV, i.e.

East-North-Vertical, IGS14 XYZ, plates ENV). In this case, a user interface control (Fig. 3.2)

allows the choice of the plate for the velocity calculation; IGS14 ENV data can also be used for

StaVel computations as well as for possible subsequent GridStrain computations.

Moreover, for completeness GetNevada also allows the download of IGS14 XYZ data, i.e.

time series in GNSS geocentric coordinates, but these data are unsuitable for StaVel

computations.

The valid PlateIDs are (see also Fig.3.2):
'IGS14 - XYZ','IGS14 - ENV', 'AF','AN','AR','AU','BU','CA',

'CO','EU','IN','MA','NA','NB','NZ','OK','ON','PA','PM','PS',

'SA','SB','SC','SL','SO','SU','WL'.

The option valid PlateID is added in order to allow the use of this function under GNU Octave.

Figure 3.2 Choice of plate for GetNevada execution.

The successfully downloaded files have name

 8

(OutDir)\(station name)(AddName)(Ext) (Windows)

(OutDir)/(station name)(AddName)(Ext) (Unix, MacOS)

were:

- If OutDir is undefined or empty, the downloaded files are placed in the current directory.

- If AddName is non-empty and its first character is not '.', it is AddName=['.'

AddName].

If AddName is empty, the possible name component is taken from the filename of Nevada

database (for example, in the case of Eurasian plate the default AddName is '.EU').

- If Ext is non-empty and Ext(1) is not '.', it is Ext=['.' Ext].

If Ext is empty, the extension is taken from the filename of Nevada database (.tenv3

for env files and .txyz2 for XYZ files).

The output cell variable StatStatus is such that StatStatus{k,1} is the name of the k-th

GNSS station and StatStatus{k,2} is true if the file download was successful and false

elsewhere.

3.3 tsData object and input/output data

A MATLAB object of tsData class is defined for each continuous station managed by means

of StaVel. Such an object is generated by using NGL data and is upgraded during the stages of

velocity calculation (offset recognition, outlier removal, trend estimation). In particular, a

tsData object is generated with the raw time series taken from a tenv3, tenv or kenv ASCII

file; the function that recognizes the type of file and extracts these data from the file is a method

of this object.

The script tsData is automatically called by StaVelMain function, which is described

in Chapter 4. However, it can also be used by means of a command line. Possible syntaxes:

tsDataOut = tsData

tsDataOut = tsData(FILENA)

The output tsData object is generated with the data taken from a tenv3, tenv or kenv

.txt ASCII file FILENA (the function that extracts these data is a method of this object). If

FILENA is undefined or empty, the filename can be interactively managed by means of a combo

box.

The properties of the generated object of tsData class are related to:

1) input time series (in this case, the data are managed by means of tsData methods);

2) time series processing (in this case, no tsData methods act on the data because the

processing is based on Hector).

Complete list of properties related of input time series (please note that all these time series

properties are defined only in the case of data taken from a tenv3 file. In the case of tenv or

kenv files some properties are undefined and, therefore, the corresponding values are empty):

Scalars/strings:

statName station name (string)
statLat station latitude (single value, degrees)
statLon station longitude (single value, degrees)

statHeight station heigh (single value, m)

 9

Arrays:

dateS date (string YYMMMDD)
dateyfrac date (fractional year

MJD modified julian date
GPSweek GPS week
GPSday GPS day

t date (MATLAB serial form)
reflon reference meridian longitude (degrees)

E0 eastings (m), integer portion (from ref. meridian
Ed eastings (m), fractional portion
E eastings (m), complete
N0 northings (m), integer portion (from equator)
Nd northings (m), fractional portion
N northings (m), complete
V0 vertical (m), integer portion
Vd vertical (m), fractional portion
V vertical (m), complete

antH antenna height (m) assumed from RINEX header
sE east sigma (m)
sN north sigma (m)
sV vertical sigma (m)

cEN east-north correlation coefficient
cEV east-vertical correlation coefficient
cNV north-vertical correlation coefficient

Complete list of properties related to the time series processing and, therefore, are empty before

such a processing:

cleanedE cleaned time series after outlier removal - East
cleanedN cleaned time series after outlier removal - North
cleanedV cleaned time series after outlier removal - Vertical

offsetsE offsets East
offsetsN offsets North
offsetsV offsets Vertical

The value of each property offsetsE, offsetsN and offsetsV, as the

offset search is carried out, is an offsets struct variable (see below). The value

of offsetsOpts:

- if the offsets recognition is carried out in an automatic way, it is

OptsGen.Offsets, where OptsGen is the struct variable with the

options for StaVelMain computations;

- if the offsets recognition is carried out in the manual way, it is the string

'Manual offsets recognition';

- if the offsets are taken from NGL database, it is the string 'Offsets

taken from Nevada Geodetic Laboratory database';

- if the offsets are taken from another database, it is the string 'Offsets

taken from file'.

outliersE outliers East
outliersN outliers North

 10

outliersV outliers Vertical

The value of each property outliersE, outliersN, outliersV, as the

outlier search is carried out, is an outliers struct variable (see below). The

value of outliersOpts is OptsGen.Outliers, where OptsGen is as

above.

estimatedTrendE estimated trend East
estimatedTrendN estimated trend North
estimatedTrendV estimated trend Vertical

estimatedTrendOpts estimated trend computation general options

The value of each property estimatedTrendE, estimatedTrendN and

estimatedTrendV, as the trend estimation is carried out, is an

estimatedTrend struct variable (see below). The value of

estimatedTrendOpts is OptsGen.Trend, with OptsGen as above.

detrendedZeroMeanE detrended zero mean East time series
detrendedZeroMeanN detrended zero mean North time series
detrendedZeroMeanV detrended zero mean Vertical time series

CMEfiltered CME-filtered time series and data

 CMEfiltered.t CME filtered time series

 CMEfiltered.E

 CMEfiltered.N

 CMEfiltered.V

 CMEfiltered.estimatedTrendE estimatedTrend data

for CME filtered time

series

 CMEfiltered.estimatedTrendN

 CMEfiltered.estimatedTrendV

 CMEfiltered.Method Method for CME filtering

The fields of these processing-related struct variables, also depending on the kind of struct

variable, i.e. offsets, outliers or estimatedTrend, as well as on the user's choices, are

taken from the JSON files generated by Hector. They can be

t1 initial time
t2 final time
N actual number of days (gaps are excluded from count)

gap_percentage percentage of gaps
K number of estimated parameters (it is not kappa!)

Ln_L minimum value of log-likelihood ln(L)
AIC Akaike Information Criterion (AIC=2*k+2*ln(L))
BIC Bayesian Information Criterion (BIC=k*ln(N)+2*ln(L))

BIC_tp another BIC value (BIC_tp=k*ln(N/(2π))+2 ln(L))
BIC_c another BIC value, with some extra-penalties

ln_det_I
NoiseModel: struct variable depending on the user's choices:

if white noise is chosen:

 NoiseModel.White

 NoiseModel.White.sigma

 NoiseModel.White.fraction

if Powerlaw noise is chosen:

 NoiseModel.Powerlaw

 11

 NoiseModel.Powerlaw.sigma

 NoiseModel.Powerlaw.d

 NoiseModel.Powerlaw.kappa

 NoiseModel.Powerlaw.fraction

if GGM (Powerlaw) noise is chosen:

 NoiseModel.GGM

 NoiseModel.GGM.sigma

 NoiseModel.GGM.d

 NoiseModel.GGM.kappa

 NoiseModel.GGM.x1_phi

 NoiseModel.GGM.fraction

if FlickerGGM noise is chosen:

 NoiseModel.FlickerGGM

 NoiseModel.FlickerGGM.sigma

 NoiseModel.FlickerGGM.d (0.5)

 NoiseModel.FlickerGGM.kappa (1)

 NoiseModel.FlickerGGM.x1_phi

 NoiseModel.FlickerGGM.fraction

if ARMA model is chosen:

 NoiseModel.ARMA

 NoiseModel.ARMA.sigma

 NoiseModel.ARMA.AR

 NoiseModel.ARMA.MA

 NoiseModel.ARMA.d

 NoiseModel.ARMA.fraction

if ARFIMA model is chosen:

 NoiseModel.ARFIMA

 NoiseModel.ARFIMA.sigma

 NoiseModel.ARFIMA.AR

 NoiseModel.ARFIMA.MA

 NoiseModel.ARFIMA.d

 NoiseModel.ARFIMA.fraction

driving_noise driving noise standard deviation (mm)
Trend estimated trend (mm/y)

trend_sigma estimated trend standard deviation (mm/y)
Sa_cos yearly cos coefficient

Sa_cos_sigma yearly cos coefficient standard deviation
Sa_sin yearly sin coefficient

Sa_sin_sigma yearly sin coefficient standard deviation
Sa_amplitude yearly oscillation amplitude

Sa_amplitude_sigma yearly oscillation amplitude standard deviation
Sa_phase yearly oscillation phase

Sa_phase_sigma yearly oscillation phase standard deviation
Ssa_cos half-yearly cos coefficient

Ssa_cos_sigma half-yearly cos coefficient standard deviation
Ssa_sin half-yearly sin coefficient

 12

Ssa_sin_sigma half-yearly sin coefficient standard deviation
Ssa_amplitude half-yearly oscillation amplitude

Ssa_amplitude_sigma half-yearly oscillation amplitude standard deviation
Ssa_phase half-yearly oscillation phase

Ssa_phase_sigma half-yearly oscillation phase standard deviation
jumps_epochs

Jump parameters jumps_sizes

jumps_sigmas

For example, the trend value and standard deviation for the East component of the tsData

object named tsDataBOLG are tsDataBOLG.estimatedTrendE.trend and

tsDataBOLG.estimatedTrendE.trend_sigma respectively. If power law is among the

chosen noise models, the corresponding k is tsDataBOLG.estimatedTrendE.

NoiseModel.Powerlaw.kappa (if power law is not a chosen noise model, the field is

empty).

Since all .m files are available to the user, he/she can make the toolbox compatible with

other kinds of input files by editing the tsData.m file and adding other methods to tsData

object in order to allow a successful data reading.

Note: a tsData object can be read as an object only if it is loaded in an appropriate way. If such

a file is not correctly accessed, it is not read as a tsData object but such a warning message

appears: “Warning: Variable 'ts' originally saved as a tsData cannot

be instantiated as an object and will be read in as a uint32.” In

order to solve this problem and allow a correct access to a tsData file whichever is its folded,

the function tsDataFileIn can be used. Its syntax is:

[tsDataOut,IT]=tsDataFileIn(tsDataIn)

This function checks if the input variable tsDataIn is a tsData object.

If this test is passed, tsDataOut=tsDataIn and IT is true.

If the test is not passed and tsDataIn is a char variable, the function checks if it exists a

MATLAB .mat file with this name and carrying a tsData object (see below for more details

about this file).

If tsDataIn is undefined or empty, the MATLAB .mat file carrying a tsData object can be

managed in an interactive way.

If the tsData object should be extracted by a file:

- if a single variable is carried by the file, it must necessarily be a tsData object;

- if two or more variables are carried by the file, one and only one of them must be a

tsData object.

If the file loading is successful, the extracted tsData object is tsDataOut and IT is true. If

no a valid tsData object is extracted, tsDataOut is empty, IT is false and a warning message

is shown.

3.4 Other output files

The above-described tsData object represents both the input data, downloaded from NGL or

other compatible database, and the results of the processing. During the execution of the main

function of StaVel, which call Hector several times, in addition to updating the tsData object

for each station, some essential ASCII files are generated to allow Hector to proceed in the

 13

various calculation steps. These ASCII files are stored in some folders (if these folders do not

exist at the time of initialization of StaVelMain program, they are automatically generated).

For each processed station, as the calculation steps progress, files are generated and placed

in these folders, whose names can be managed by acting on geneOpts function, described in

the next chapter:

• Folder of downloaded ASCII ENV files (tenv3, tenv or kenv files). Such a folder is

filled by means of the above described GetNevada function. A possible folder name is

tenv_EU if the EU plate is considered;

• Folder of tsData objects, generated by means of tsData.m called by StaVelMain,

stored as .mat files and upgraded at each calculations step. The default folder name is

ts_files;

• Folder of raw mom files. A mom (MJD-Observations-Model) file is an ASCII file with the

time series in the first two columns (MJD dates in the first column and data in the second

one. An optional third column has the modeled data). The extensions always is .mom,

regardless to the number of columns (an example of mom file is shown in Fig. 3.3). This

folder is filled by StaVelMain function. The default folder name is raw_files;

• Folder of control files for Hector. They are ASCII files, whose extension is .ctl,

generated by StaVelMain, for each step in which Hector is involved, on the basis of

options initially managed by means of geneOpts function. The default folder filename is

ctl_files;

• Folder of observation mom files. They are generated as the offset recognition or acquisition

from a database is carried out, regardless to the fact that they are provided by Hector, called

by StaVelMain, or by other functions called by StaVelMain. The file header of an

observation mom file (or of a mom file subsequently generated) provides information about

possible offsets (see Figure 3.3). The default folder filename is obs_files;

• Folder of JSON files, generated by Hector as the calculation steps progress. The JSON files

are read by StaVelMain in order to upgrade the tsData objects. The default folder

filename is JSON_files;

• Folder of Hector output files, generated by StaVelMain on the basis of the Hector

output. At present, these files are not used for tsData file upgrade, but they provide a

little bit more information with respect to JSON files and could be manually read by the

user, if necessary. The default folder filename is out_files;

• Folder of pre-processed mom files, generated by Hector as the outlier recognition is carried

out. The default folder filename is pre_files;

• Folder of results mom files, generated by Hector as the trend estimation is carried out.

These mom files have three columns, where the third one has the modeled time series (they

are the only three-column files; in other cases where Hector provides three-column files,

the third is removed from StaVelMain in order to prevent problems in the next

calculation steps. The default folder filename is mom_files.

For more information about control and mom files, please see the Hector User’s Guide.

Information can also be taken by a look to the StaVelMain.m file.

Final note for use by expert users potentially interested in customizing the StaVel

toolbox. As regards the management of the offsets in the functions of the toolbox, the binary-like

convention shown in Table 3.2 is used (please also note that the dates are in this case expressed in

the MJD form). In the functions that make use of it (for example, InspOffsetMom), the

corresponding matrices are indicated with MosMom. Since the toolbox can also generate .neu

 14

files that might be used by CATS (Williams, 2008), the convention presented in Table 3.3 is also

used; the corresponding matrices, in which the dates are presented in fractional year form, are

indicated with Mos. For example, an offset in the East component only has code 3 with the mom

convention, and code 2 with the neu convention (see the help of writeNeuMom and

MosMom2MosNeu for more information).

Figure 3.3 Example of a three-columns mom file.

 Table 3.2 Binary convention for offsets (mom files)

East North Vertical Code

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

 Table 3.3 Binary convention for offsets (neu files)

North East Vertical Code

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

 15

4. Main StaVel functions
From the point of view of the execution of all actions that can be implemented within the toolbox,

the main MATLAB functions are:

• GetNevada, for the download of coordinate time series from Nevada Geodetic

Laboratory (NGL) o from another similar database, already described in the previous

chapter;

• geneOpts, for the management of StaVel options (models to be used for data

processing, choice of folders and filename common parts);

• StaVelMain, main StaVel function, which is the heart of the toolbox;

• geneGSfile, for the generation of an ASCII file compatible with GridStrain.

These functions call, where necessary, other specifically developed functions.

4.1 Choice of StaVel general options: geneOpts function

The function geneOpts allows the generation of the option struct variable Opts which is used

by StaVelMain and by other functions called by StaVelMain at the various stages of the

computation. The syntax is:

Opts=geneOpts(Components,OffsetNM,TrendNM,…

CommonFolder,CommonAdd,Lmin,Lmax)

Input arguments:

- Components: vector of components, where 0 means East, 1 means North and 2 means

Vertical. For example, to analyze horizontal components only, the required choice is

Components=[0 1].

If Components is undefined or empty, Components=[0 1 2] is used.

- OffsetNM: Noise models to be used for offset recognition. Allowed values are the strings:

FNWN flicker noise and white noise
PLWN power law and white noise

RWFNWN random walk noise, flicker noise and white noise
WN white noise

If OffsetNM is undefined, empty of is no an allowed string, the default choice WN is used.

- TrendNM: Noise models to be used for trend computation. The argument must be either an

allowed string (see below the list of allowed strings) for the case of a single noise model or

a cell variable whose elements are allowed strings for the case of multiple noise models.

The allowed strings are:

WN white noise
GGM generalized Gauss-Markov
fGGM k-fixed GGM

FN flicker noise
FNGGM flicker noise GGM

RW random walk
RWGGM random walk GGM

PL power law
PLGGM power law GGM

 16

MT Matern
VA varying annual

VSA varying semi-annual
AR1 ARMA

If TrendNM is undefined, empty, or no valid strings are in TrendNM, the default choice

TrendNM={'WN','PL'} is used.

- CommonFolder is an optional general folder, subfolder of the main StaVel folder, that

will contain all the folders generated/filled by StaVelMain. If CommonFolder is

undefined or empty, the general folder is the main StaVel folder.

- CommonAdd is the common string to be added to the file name. Options:

- it is a char (included the empty char “”): it is used for all the generated files. For

example, the generated raw file for a station NAME is

'./raw_files/NAME.EU.mom' if EU is CommonAdd and './raw_files'

is the raw files folder. If CommonAdd is “”, in the same conditions the raw file is

'./raw_files/NAME.mom'.

- it is not a char (including [], i.e. empty vector, but not empty char). No a common

string is used and each generated file can have a specific added string (these strings

are defined by editing the present function).

- Lmin and Lmax are the optional minimum and maximum lengths of the GNSS time series,

expressed in years. If Lmin (Lmax) is undefined or empty, no minimum length (no

maximum length) is considered. Good practices require Lmin ≥ 4.5 (years).

Example of Opts struct variable:

dirEnv './Syr/tenv_AF'

dirTs './Syr/ts_files'

dirRaw './Syr/raw_files'

dirObs './Syr/obs_files'

dirPre './Syr/pre_files'

dirMom './Syr/mom_files'

dirCtl './Syr/ctl_files'

dirOut './Syr/out_files'

dirJSON './Syr/JSON_files'

dirHector '/mnt/c/GNSS/hector’

extTenv '.tenv3'

Components [0 1 2]

AddNeu ‘.EU’

AddTs ‘.EU’

AddRaw ‘.EU’

AddObs ‘.EU’
AddPre ‘.EU’
AddMom ‘.EU’
AddOut ‘.EU’

AddJSON ‘.EU’

Lmin 4.5000

Lmax []

Offset [1×1 struct]

Outlier [1×1 struct]

Trend [1×1 struct]

 17

In order not to make it necessary to introduce a complex user interface that is not compatible with

GNU Octave, the fields relating to the names of the folders of the files generated or modified

directly and indirectly by StaVelMain are managed by acting on the program lines of the

geneOpts function (it is recommended to always have a backup copy of this function in order

to facilitate any future changes). Please open the file geneOpts.m to see how this function is

structured and how it can be modified.

The values of the Offset, Outlier and Trend fields are themselves struct variables,

established on the basis of the options chosen by the input options of geneOpt and the choices

on foldernames. These values act on generation of the corresponding Hector control (.ctl)

files by StaVelMain. An example of Opts.Trend is the struct variable:

Interpolate 'no'

PhysicalUnit 'mm'

ScaleFactor 1

Seasonalsignal 'yes'

Halfseasonalsignal 'yes'

JSON 'yes'

estimateoffsets 'yes'

NoiseModels 'White Powerlaw'

(meaning of these choices: differential coordinate data expressed in mm, to provide velocities in

mm/y; no interpolation for the dates where data are missing; annual and semi-annual signals are

modeled; the offsets at the already known offset dates are estimated1; the noise models are white

noise and power law noise).

4.2 The main StaVel function: StaVelMain

The main component of StaVel toolbox is the function StaVelMain.m, whose syntax is:

COut=StaVelMain(fileStations,OptAct,OptsGen)

This function, which calls the external package Hector, can perform all computations necessary

to obtain the velocities of the GNSS stations listed in the Excel or ASCII file fileStations.

Each station must be represented by its standard 4-character name. In the case of an Excel file,

the station names must be placed in the first column (no more than the first column is read). In

the case of an ASCII file, only a column is admitted.

If fileStations is undefined or empty, the filename can be interactively managed.

Figure 4.1 Interactive choice of General initial option for StaVel.

1 Please note that “estimate offsets” does not mean “recognize the offsets”, i.e. recognize the offsets dates, but “Estimate

the offsets at the dates reported in the headers of the mom files”.

 18

The second input argument, OptAct, allows the choice of the operation to be carried out. There

are several options for such an argument. If OptAct is undefined, empty or outside 1:10, the

choice can be carried out in an interactive way by means of a user interface (Fig. 4.1).

If OptAct is a scalar in the range 1:10, the corresponding action is carried out.

If OptAct is 1 or 3 (chosen as an input argument or by means of interactive choice), the option

about the offset management (OptOff) can be interactively chosen with the user interface

shown in Fig. 4.2.

If OptAct is 7 (chosen as an input argument or by means of interactive choice), the option about

the CME estimation method can be interactively chosen with the user interface in Fig. 4.3 (see

Subsection 4.5 for more information about CME estimation and filtering).

If OptAct is 9 (chosen as an input argument or by means of interactive choice) and CME-

filtered data are available, the use can generate the output variable COut on the basis or non-

filtered or filtered data. The option can be interactively chosen (Fig. 4.4).

Figure 4.2 Choice of the modality for search/use of offsets if OptAct is 1 or 3.

Figure 4.3 Choice of the CME filtering option if OptAct is 7 (for more information,

please see Subsection 4.5).

Figure 4.4 Choice for the generation of the output cell variable if OptAct is 9. Clearly,

if the option 1 (respectively 9) is chosen, trends obtained from the original data (CME-

filtered data) must be available.

 19

If OptAct is a 2-length vector, OptAct(1) is the option 1-10 as above, and OptAct(2) is

OptOff, i.e. the option for the offset management (1-6 to manage offsets, 7 to exit from

StaVelMain), provided that OptAct(1) is 1 or 3, the option for the CME estimation,

provided that OptAct(1) is 7, or the option for the choice of trends from original or CME-

filtered data, provided that OptAct(1) is 9 and these trends exist. Clearly, the second element,

i.e. OptAct(2), is actually used only if OptAct(1) is 1, 3, 7 or 9. The vector option about

OptAct is introduced to allow the use of StaVelMain under GNU Octave.

OptsGen is the struct variable with the general StaVel options, generated by means of the

already described geneOpts function. If OptsGen is undefined or empty, the name of the file

carrying such a struct variable can be interactively managed. In this case, the file must have a

field whose name is either Opts or OptsGen.

The output variable COut is non-empty if OptAct is 1, 5, 6, 8 or 9, empty elsewhere. If COut is

non-empty, it is a N-by-11 cell array, where N is the number of managed stations, and the

columns are:

[station name, initial time, final time,

station latitude, station longitude, station height (m a.s.l.),

estimated trend East, estimated trend East SD,

estimated trend North, estimated trend North SD,

estimated trend Vertical, estimated trend Vertical SD]

Such an output COut can be used as input of geneGSFile, described in Subsection 4.3.

If OptAct is 8, the trends are related to CME-filtered time series.

It is important to highlight these facts about StaVelMain:

1) Although, in principle, all operations could be implemented in fully automatic way

(OptsAct 1), this is not recommended. It is recommended to at first generate the tsData

and mom files for each station (option OptsAct 2), then proceed to search for the offsets

(automatic or manual), or to download and verify them (OptsAct 3), when the offsets are

at least verified, proceed to the recognition of the outliers and, finally, to the calculation of

the trends (OptsAct 4, 5 and 6, based on the user’s wishes to proceed step-by-step or to

perform the two steps automatically). It is therefore recommended to start StaVelMain

several times. This is also shown in the short tutorial (Chapter 5);

2) If the user decides to use StaVelMain for OptsAct after 1 (”ALL STAGES”), it is

essential that the previous operations have already been performed or that in any case the

necessary data are already present. This is highlighted in the user interface. For example, in

order to perform OptsAct 4 and 6, the offset dates, if any, must already be known and

the necessary files in the Hector observation mom files folder (and those in the

preprocessed mom files folder for OptsAct 6) must already be available;

3) It is not strictly necessary that the computer is online during the implementation of the

StaVelMain calculations and of the external functions and programs controlled by

StaVelMain (obviously, the computer had to be online at the time of the download of the

files implemented by the GetNevada function). However, if the data taken from the

database is of the type tenv, kenv or tenv3 with 20 columns, the computer must be

online at the time the tsData objects are generated (OptsAct 1 and 2) in order to

access the longitude, latitude and ellipsoidal height data (these data are instead taken

directly from the file in case of tenv3 file with 23 columns);

 20

4) StaVelMain operates for each station considered in the list placed in

filenaStations, that is, all the operations selected through OptsAct are all

performed, one after the other, for each station. The generation of the tsData objects, of

the raw mom files and the management of the offsets, if selected, is carried out for all the

components at the same time; the subsequent phases, if selected, are instead implemented

component by component, before moving on to the next station;

5) If a user wants to repeat the calculation by changing one or more parameters, he/she can

redefine the options using geneOpts, save a copy of the starting data in the necessary

folders and proceed with a new StaVelMain session. For example, if the user intends to

recalculate the trend on the basis of different noise models or periodic signals keeping the

previously processed data, he/she can copy the preprocessed mom files into a new folder,

whose name will be entered in OptsGen by acting on geneOpts, and then repeat the

calculation by choosing OptsAct 5 or 6;

6) The folders defined by means of geneOpts, if not existing, are generated by

StaVelMain. If a folder already exists, StaVelMain does not alter its contents except

when writing the files. In case of files with the same name, StaVelMain rewrites without

any warning. It should be noted that the user can repeat the analysis for some stations, or

introduce new stations, simply by acting on fileStations. For example, he/she can

consider a new file fileStations1, with only the names of the stations to recalculate

and/or add, and proceed. He/she then redefine a third file fileStations2 with all

stations to implement OptsAct=9 and then export the data for GridStrain. An

example of this possibility is given in Chapter 5 for tutorial purposes;

7) The CME estimation and removal is carried out by means of CMEstackFiltering,

which can be called by StaVelMain is OptAct 7 is selected. However, the direct use of

CMEstackFiltering offers more options with respect to the use of such a function

called by StaVelMain. Please see Subsection 4.5 for more information.

4.3 Inspecting the coordinate time series: the InspectOffsetSearch function.

The time series inspection is an important stage of GNSS data analysis. The function

InspectOffsetSearch allows the inspection of several time series and the manual

check/search of the possible corresponding offsets.

This function can be used in two different ways:

• Direct use as an independent function (see below the corresponding command line);

• Use as a function called by StaVelMain. This function is called by StaVelMain if

OptAct is 1 or 3 (or is a vector whose first element is 1 or 3) and the corresponding

OptOff (interactively chosen or defined as second element of OptAct if this is a vector)

is 4 or 6 (for the other options about OptOff, the offsets are managed in a non-interactive

manner).

The syntax for the direct use is:

InspectOffsetSearch(fileStations,OptsGen,OptPre)

This function allows the visual inspection of GNSS time series on the stations listed in

fileStations in accordance with the StaVelMain options stored in the struct variable

OptsGen. This function requires the availability of tsData files related to the listed stations.

Input variables:

 21

- fileStations carries the list of GNSS stations, represented by their standard 4-

character names. This file can be either an Excel or an ASCII file. In the case of Excel file,

the station names must be placed in the first column (no more than the first column is read).

In the case of an ASCII file, only a column is admitted. If filenaStations is

undefined or empty, the filename can be managed in interactive way. Let statName be

the string array with the station names obtained from the loaded file.

- OptsGen is a struct variable generated by means of geneOpts function. For each station,

the input tsData file is searched of the basis of the station name, statName(k), and

information carried by OptsGen in accordance with:

filets=fullfile(OptsGen.dirTs,…

[statName(k) OptsGen.AddTs '.mat']).

The tsData file is upgraded according to the detected offsets. The corresponding mom

observation files, whose names are stored in OptsGen, are also generated and/or

upgraded. If OptsGen is undefined or empty, the .mat file with such a struct variable can

be interactively managed.

- If OptPre is undefined, empty or false, no possible already available data about offsets are

used, i.e. the offsets search is carried out starting from scratch. If OptPre is true, for each

station the offsets search starts from the offsets resulting from the corresponding tsData

object.

It is important to underline that the InspectOffsetSearch function allows not only to

inspect the time series and to identify/verify the dates of the offsets, but also to identify any

anomalous segments of them to be taken into consideration or, if necessary, to be removed. For

an example of use of such a function, including the acquisition of information about the removal

of time series segments, please see the tutorial Subsection 5.3.

4.4 Removal of time series segments: the tsSegmentRemoval function

In some cases, it is necessary to remove one or more segments of a time series because they are

affected by excessive dispersion, progressive changes in position not related to crustal kinematics

or other reasons. The tsSegmentRemoval function allows you to do this. It should be noted

that this is a low-level automation function in order to avoid sudden deletion of data. The

corresponding syntax is:

tsSegmentRemoval(statName,OptsGen,MdateRemove,OptStr)

This function allows the removal of one or more segments from the time series related to the

station statName, on the basis of the general StaVel options represented by OptsGen struct

variable.

The input argument MdateRemove is a Nrem-by-2 matrix, where Nrem is the number of

time series segments to be removed, MdateRemove(k,1) and MdateRemove(k,2) are the

lower and higher date limit, expressed in MATLAB serial form, for the k-th segment.

The tsData file and the related mom files are automatically upgraded. If the input argument

OptStr is 'Obs', the observation mom file is upgraded. If OptStr is 'Raw', the raw mom

file is upgraded. If OptStr is undefined, empty or is not 'Obs' or 'Raw', the default value

'Obs' is used.

For an example of use of tsSegmentRemoval please see the tutorial Subsection 5.3.

 22

4.5 Common Mode Error filtering: the CMEstackFiltering function

The function CMEstackFiltering performs the CME evaluation and filtering. It can be called

by means of StaVelMain function or can be used in autonomous way. At present, these CME

estimation procedures are implemented in CMEstackFiltering:

- Stacking (Wdowinski et al., 1997);

- Weighted Stacking Filtering Method (Nicolaidis, 2002);

- Distance Weighted Filtering Method (He et al., 2020);

- Correlation Weighted Stacking Filtering Method (Tian and Shen, 2011).

The syntax of this function is:

CME=CMEstackFiltering(fileStations,OptsGen,OptStack,Ncomp,Nstaz)

This function carries out the CME filtering of the time series of the GNSS stations listed in the Excel

or ASCII file fileStations on the basis of the chosen stacking approach (see below about possible

options).

Warning: since CME filtering requires detrended, zero-mean time series, trend estimations

must already be available!

If data about detrended, zero mean time series are available in a tsData file, they can be used (see

below about the input variable OptStack). It they are unavailable, or the user wants to re-compute

them, the detrended, zero-mean time series are computed and the corresponding tsData files are

upgraded. As the calculations are completed, the tsData files of involved stations are

automatically upgraded and the corresponding preprocessed mom files are generated.

The output CME is a struct variable whose fields are:

deltat vector [t1 t2] of initial and final time (serial form)

Ivv nt-by-ns matrix, where nt is the length of the daily time vector t1->t2 and ns

is the number of stations, where Ivv(k,h) is true if at the time t(k) there are

valid values for all components of the station h

CMEE nt-by-1 vector (options OptStack 1-3, 5-7, see below) or nt-by-ns matrix

(OptStack 4 or 8) of common mode error for East component

CMEN as above, North component

CMEV as above, Vertical component

If the computations cannot be carried out, CME=[] is returned.

Each station must be represented by its standard 4-character name in fileStation. In the case of

an Excel file, the station names must be placed in the first column (no more than the first column is

read). In the case of an ASCII file, only a column is admitted. If fileStations is undefined or

empty, the filename can be interactively managed.

OptsGen is the struct variable with the general StaVel options, generated by means of

geneOpts function. If OptsGen is undefined or empty, the name of the file carrying such a struct

variable can be interactively managed. In this case, the file must have a field whose name is either

Opts or OptsGen.

OptStack is the option on stacking. The admitted values are:

1. simple stacking;

2. stacking weighted by errors on daily positions;

3. stacking weighted by distance of each station from the network center;

 23

4. stacking weighted by correlation between stations time series;

(note: if OptStack options 1-4 are selected, for each station the existence of detrended zero-

mean time series is checked. If such a time series exists, it is used for the CME estimation. If

such a time series does not exist instead, it is computed like the case of options 5-8)

5. simple stacking, with recalculation of possible existing detrended zero-mean time series;

6. stacking weighted by errors on daily positions, with recalculation of possible existing

detrended zero-mean time series;

7. stacking weighted by distance of each station from the network center, with recalculation of

possible existing detrended zero-mean time series;

8. stacking weighted by correlation between stations time series, with recalculation of possible

existing detrended zero-mean time series;

9. simple stacking with minimal detrending, i.e. detrending based on simple least square fitting to

a straight line (in this case, the Hector-based trend is not used);

10. stacking weighted by errors on daily positions with minimal detrending;

11. stacking weighted by distance of each station from the network center with minimal

detrending;

12. stacking weighted by correlation between stations time series with minimal detrending.

If OptStack is undefined, empty or is not an admitted value, it can be interactively chosen.

Ncomp is the number of components. Allowed values: 2 (E-N), 3 (E-N-V). If Ncomp is undefined,

empty or is not an allowed value, Ncomp=3 is used.

Nstaz is the minimum number of stations to be used for stacking at each time. If, at a time t(k),

less than Nstaz stations have data, CMEE(k)=0, CMEN(k)=0, CMEV(k)=0, where

CMEE=CME.CMEE, CMEN=CME.CMEN and CMEV=CME.CMEV. Nstaz must be at least 3, i.e. at a

time t(k), data from at least 3 stations are necessary to allow the computation of CME. If Nstaz

is undefined, empty or lower than 3, the default Nstaz=3 is used. If Nstaz is Inf or higher than

the number of stations, CMEs are non-zero only at the times where all stations have data.

Figure 4.5 Example of plot provided by CMEstackFiltering function. The fact that the

variance after CME filtering is lower than the one before filtering should be noted. The

original and filtered time series coincide after October 2020 because data from no more than

two stations are available (at a given time, the CME can be computed only if data from at

least three stations are available).

 24

Examples of plots provided by CMEstackFiltering function, with the option “correlation-

based stacking” are shown in Figs. 4.4 and 4.5 for two stations belonging to the sample dataset

included in StaVel toolbox. In this specific case, the limited area of the stations does not actually

recommend filtering, which is only presented here for tutorial purposes. Instead, it is better to

estimate and remove the CME, operating at the level of homogeneous areas, when there are many

stations in a very large area. Once the homogeneous areas have been identified, each of them

presumably affected by a specific CME, the user can proceed with the modeling and filtering of the

time series of the stations within each of them (a trial-and-error approach could be necessary). In

this way, the effects of the different CMEs which could give rise to huge uncertainties on the speed

estimates will at least be attenuated.

Figure 4.6 Another example of plot provided by CMEstackFiltering function.

4.6 Exporting the StaVel results to GridStrain: the geneGSFile function

As the velocity computations are completed, the results can be exported to GridStrain

toolbox by means of geneGSFile function, whose syntax is:

CCompl=geneGSFile(CellIn,FilenaOut,N,DTY,UTMZzone,NameID)

This function generates the .txt file FilenaOut suitable for GridStrain (2D or 2.5D) on the

basis of:

- Input cell data CellIn provided by a previous StaVelMain session.

Options:

- CellIn is a cell variable available in MATLAB command window (e.g. a COut

variable provided by a StaVelMain session);

- CellIn is a string (including or not including the extension '.mat') with the

filename of the MATLAB file which contains the cell variable. The file must contain no

more than a field, regardless to its name;

- CellIn is undefined or empty. In this case, the filename is interactively managed.

- Name of the output ASCII file filenaOut. If filenaOut is undefined or empty, the

filename can be interactively managed.

 25

- Number of coordinates to be taken into account. Valid choices are 2 (horizontal components

only) and 3 (xyz coordinates). If N is invalid, undefined or empty, N=2 is used.

- Time series minimum duration, in years, dty. The stations whose time series are shorter than

dty are excluded from the output file. If dty is undefined or empty, no a minimum duration

is considered.

- UTM zone expressed by the string UTMzone (e.g. '33N'). If UTMzone is undefined or

empty, the default UTM zone which corresponds to the WGS84 coordinates is chosen.

- NameID. If NameID is undefined, empty or false, the station IDs are the station progressive

numbers. If NameID is true, the station IDs are the station names.

 26

5. Tutorial

In order to show how StaVel operates, the case of 5 GNSS stations, located in Southern Italy, for

which data is available in the NGL database, is considered here. To do this, two files are added to

the toolbox for tutorial purposes, i.e.:

- SampleStations.txt, with a list of stations;

- SampleOpts.mat, with a struct variable, named OptsGen, with the options for

StaVelMain.

The user can use these files directly and can also modify them at will to vary the conditions and,

above all, to change, if necessary, the link to the Hector folder.

Obviously, before using the StaVel toolbox, Hector must be installed (download page:

http://segal.ubi.pt/hector/).

Note: the variable OptsGen saved in SampleOpts refers to the case in which the Hector’s

executables are placed in C:\GNSS\hector on a Windows machine equipped with WSL2 (“Windows

subsystem for Linux”), so that these executables can be reached from MATLAB with the command

'/mnt/c/GNSS/hector/' (note that Hector operates under Linux). The corresponding value

must be modified if the path is different and, to generate other struct OptsGen variables, it is also

necessary to act on the corresponding line of geneOpts.m (line 139 in the current version of the

toolbox).

These steps are carried out within the tutorial:

- download of time series from NGL;

- generation of tsData and mom raw files through a first session of StaVelMain;

- use of the data available in NGL for the management of offsets with a second StaVelMain

session;

- inspection of the time series and identification of possible stations that requires manual

recognition of offsets and recognition of these offsets by using InspectOffsetSearch

function;

- Search for outliers and trend estimation with a fourth use of StaVelMain;

- export of results.

Before the listed steps, the sample files are briefly discussed.

The file SampleStations.txt has a column with the names of five GNSS continuous stations

located in Southern Italy. Information about the station ECNV can be found at

http://geodesy.unr.edu/NGLStationPages/stations/ECNV.sta, and similar for the other stations:

ECNV

EDEN

EIIV

GALF

HLNI

An Excel file with the same information could also be used (in this case, more than a column are

allowed, but only the first column is used).

As for the other sample file, the command line on MCW

load SampleOpts

http://segal.ubi.pt/hector/
http://geodesy.unr.edu/NGLStationPages/stations/ECNV.sta

 27

loads the file SampleOpts and adds the struct variable OptsGen to the current workspace. A

look to OptsGen shows that all folders will be placed inside the general folder Tutorial,

subfolder of StaVel. The command lines required to obtain such a file where:

OptsGen=geneOpts([0 1],'PLWN',{'PL','WN'},'Tutorial','.EU',4.5);

save SaveOpts OptsGen

The user could modify the variable acting e.g. on noise models. Please see the description of

geneOpts function in Chapter 4 or type help geneOpts on MCW for more information. In

this case, horizontal components are considered ([0 1]), power law and white noise are the noise

models used for all the Hector-based computations ('PLWN' for offset recognition and {'PL',

'WN'} for trend estimation), the general folder is 'Tutorial', all the file names contain '.EU'

and the time series having at least 4.5 y length are considered.

5.1 Download of time series from Nevada Geodetic Laboratory

The first step is the download of time series from NGL. To carry out this, the command is:

status=GetNevada('SampleStations.txt','EU','Tutorial/tenv_files');

which reads the station names from the file Sample.Station.txt, uses the data related to the

Eurasian plate ('EU'; if the second input argument is undefined or empty, the user interface shown

in Fig. 3.2 appears to allow the choice of the plate. Clearly, the plate choice must be coherent, i.e.

the corresponding NGL data must be available), and places the files in the folder (subfolder of the

StaVel main folder) Tutorial/tenv_EU (if this folder does not exist, it is made by GetNevada

function). For example, the name of the file related to the first station in a Windows machine is

Tutorial\ECNV.EU.tenv3

where '.EU' comes from the fact that EU (Eurasia) is the chosen plate and no an AddName input

argument is defined and '.tenv3' is the default choice for the extension if the corresponding

input argument is undefined as in this case (see Subsection 3.2 or type help GetNevada on the

MCW for more information). Clearly, the input arguments of GetNevada function must be

coherent with the StaVel general options about the Env files and the corresponding folder.

As GetNevada runs, these messages are shown by MCW:

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/ECNV.EU.tenv3 in progress...

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/ECNV.EU.tenv3 completed

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/EDEN.EU.tenv3 in progress...

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/EDEN.EU.tenv3 completed

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/EIIV.EU.tenv3 in progress...

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/EIIV.EU.tenv3 completed

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/GALF.EU.tenv3 in progress...

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/GALF.EU.tenv3 completed

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/HLNI.EU.tenv3 in progress...

Download of file http://geodesy.unr.edu/gps_timeseries/tenv3/plates/EU/HLNI.EU.tenv3 completed

The output variable status also shows that all the required data are successfully downloaded.

Please note that, is not already available, the folder Tutorial, with the subfolder tenv_files,

is generated.

5.2 Generation of tsData objects and raw mom files

The second step involves StaVelMain function. The option for the actions to be chosen in this

case, i.e. OptsAct, is 2, to be entered in the command line or to be chosen with the user interface

shown in Fig. 4.1 (GNU Octave users must necessarily use the command line with all the correctly

defined input arguments). The two possibilities correspond to these command lines:

 28

COut=StaVelMain('SampleStations.txt',2,OptsGen);

COut=StaVelMain('SampleStations.txt',[],OptsGen);

Please note that this command line

COut=StaVelMain;

is also valid in MATLAB (not in GNU Octave). In this case, all the input arguments are managed in

an interactive way. Another example of valid command line is COut=

StaVelMain([],[],OptsGen). Other combinations of input arguments are also valid (please

see Subsection 4.2 or type help StaVelMain for more information). Clearly, if OptsGen is

among the input arguments, such a variable must be available in the workspace because a

geneOpts session was carried out or the file SampleOpts was loaded before the specific

StaVelMain session.

Regardless to the used command line, for the choice OptAct=2 the tsData objects and the raw

mom files are generated for each station listed in SampleStations.txt and placed in the

folders chosen by means of OptsGen. Since no trends are estimated at this stage, the output

variable COut is empty.

5.3 Download of data about offsets, inspection of the results, search of possible other offsets

and generation of observation mom files

The NGL database also has data about offsets. Please note that in such a database the offsets are

called steps. The reference page accessed by the function NevadaAllOffset, automatically

called by StaVelMain, is http://geodesy.unr.edu/NGLStationPages/steps.txt. This tutorial shows

the case of using the offsets available in the NGL database. The command line complete and also

compatible with GNU Octave is:

COut=StaVelMain('SampleStations.txt',[3 3],OptsGen);

where [3 3] indicates Offsets recognition/taking (“first 3”) and download of offsets by NGL

database without subsequent manual offset check (“second 3”); see below for the manual offset

check by using StaVelMain. MATLAB users can interactively select the corresponding options.

As StaVelMain runs with such a command, this is progressively shown on the MCW:

Offsets database loading in progress...

... Offsets database loaded

Station ECNV, no offsets from database

Station EDEN, offsets from database taken

Station EIIV, offsets from database taken

Station GALF, no offsets from database

Station HLNI, offsets from database taken

The tsData objects are upgraded and the observation mom files are generated. The message no

offsets from database means that no offsets are known to NGL for the specific station.

Also in this case, COut is empty.

It is undoubtedly advisable, and indeed necessary, to verify the validity of the information about

offsets. For this reason, the next step is the inspection of the results, to be implemented using the

InspectOffsetSearch function (please see Subsection 4.3 or type help

InspectOffsetSearch on the MCW for more information about his function). As stated in

Subsection 4.3, InspectOffsetSearch can the directly used, or called by StaVelMain.

http://geodesy.unr.edu/NGLStationPages/steps.txt

 29

5.3.1 Direct use of InspectOffsetSearch.

In the specific case, the command line is

InspectOffsetSearch('SampleStations.txt',OptsGen,1)

where the third input argument (1) allows the use of already available information on offsets, i.e., in

this case, the information downloaded from NGL database (true is also a valid input for this

option. If the user wants to exclude the available information, the third input variable should be 0,

false, [] or also undefined).

As the function runs, Fig. 5.1 appears (the figure name has the station name, in this case ECNV, and

the whole time span of available data). A drop-down menu allows the choice of the zoom

parameters to allow the choice of the offset dates, if this is required. The possible options are

ZOOM ON 14 DAYS TIME SERIES AROUND A SELECTED TIME

ZOOM ON 1 MONTH TIME SERIES AROUND A SELECTED TIME

ZOOM ON 6 MONTH TIME SERIES AROUND A SELECTED TIME

ZOOM ON ONE YEAR TIME SERIES AROUND A SELECTED TIME

FREE CHOICE OF TIME LIMITS

EXIT

If no offsets seem to exist, the better solution is EXIT. Please note that, when EXIT is pressed after

the selection of one or more offsets, the specific tsData file is updated with the selected

offsetsE, offsetsN, offsetsV properties. Similarly, the observation mom files are updated.

If the observation mom files do not exist, they are generated.

Figure 5.1 Time series related to the first station of the lists and related drop-down menu.

In the case of ECNV (first station of the sample list), no offsets are in the NGL database (if some

such offsets existed, they would be shown in Fig. 5.1 in a similar way to that of Fig. 5.4 in the case

of EIIV. However, an anomalous trend is observed for the N component around January 2009. This

suggests the suppression of the corresponding segment of the time series of all the components and

the introduction of an offset, limited to the N component, or the start time, or the termination of the

 30

deleted segment. To do this, the user first zooms on the time series, for example using the ass option,

thus obtaining Fig. 5.2, whose drop-down menu offers various options:

OFFSET E-N-V (7)

OFFSET E-N (6)

OFFSET E-V (5)

OFFSET E ONLY (4)

OFFSET N-V (3)

OFFSET N ONLY (2)

OFFSET V ONLY (7)

DATE ACQUISITION ONLY

NO OFFSET, NO DATE

Figure 5.2 Zoom on time series and selection of the operation to be carried out.

The command DATE ACQUISITION ONLY allows the selection of the initial and final date of the

segment to be removed (please note that the removal is not carried out in this stage; another function

must be invoked, as shown below). As a selection is done, the zoom must be repeated on a figure

like Fig. 5.1, where offsets, if selected, are shown as vertical lines. To allow escape is necessary, the

command NO OFFSET, NO DATE closes the zoom figure without any change. In the specific

case two dates are selected (Fig. 5.3) and an offset is recognized at the first of these dates. Therefore,

three consecutive zooms are necessary.

Figure 5.3 Selection of initial and final date of the time series segment to be removed

 31

As EXIT is selected, the time series of the second station, in this case EDEN, is shown, and so on.

The EDEN time series does not require any action. The time series of the third station, EIIV, is

more interesting (Fig. 5.4). An offset is provided by NGL database and anomalies can be seen

around January 2019.

Figure 5.4 Time series of a station where an offset is already known.

5.3.2 Calling InspectOffsetSearch from StaVelMain

The same result can be obtained by calling InspectOffsetSearch from StaVelMain. It the

user wants to ignore possible already known offsets (such a choice corresponds to

InspectOffsetSearch with third input argument undefined, empty of false), the command line

should be

COut=StaVelMain('SampleStations.txt',[3 1],OptsGen);

COut=StaVelMain('SampleStations.txt',[3 2],OptsGen);

COut=StaVelMain('SampleStations.txt',[3 3],OptsGen);

COut=StaVelMain('SampleStations.txt',[3 5],OptsGen);

or equivalent interactive options.

If the user wants to manually check and, if necessary, integrate the offsets list, the command list

should be

COut=StaVelMain('SampleStations.txt',[3 4],OptsGen);

COut=StaVelMain('SampleStations.txt',[3 6],OptsGen);

for the case of NGL or another database respectively.

In this case, NGL is used and, therefore, OptAct=[3 4] is the choice to carry out the above

described activity in the same StaVelMain session in which the offset data are downloaded. The

direct use of InspectOffsetSearch function, or the use of such a function called from

StaVelMain, simply depends on user’s wishes. There are no significant differences in the two

cases.

 32

5.3.3 Removal of time series segments

As an InspectOffsetSearch session (independent or called by StaVelMain) is completed,

the problematic time series segments can be removed using the tsSegmentRemoval function

(please see Subsection 4.4 or type help tsSegmentRemoval on MCW for more information

about this function). The latter operates exclusively at the level of a single station in order to prevent

incorrect cancellations. In the case of the ECNV station, the delete command is

tsSegmentRemoval('ECNV',OptsGen,[733746 733833]);

or, equivalently,

tsSegmentRemoval('ECNV',OptsGen,[733746 733833],'Obs');

where the dates, expressed in the serial MATLAB form, were previously found with

InspectOffsetSearch. It is important to underline that the tsSegmentRemoval function

updates and saves the tsData files and the observation mom files (or the raw mom files if

indicated in the command line)2. The ECNV time series after this action is shown in Fig. 5.5. Such a

figure can be obtained either with a new session of InspectOffsetSearch, or with a session of

InspOffsetMom is the check is required for one or two stations and a manual approach is

suitable. In this second case, the command line is

InspOffsetMom('ECNV',OptsGen,[],1)

(please type help InspOffsetMom on MCV for more information about this function).

Figure 5.5 ECNV time series after segment removal and offset recognition.

A similar action is required for EIIV time series. In this case, the corresponding command line is

tsSegmentRemoval('EIIV',OptsGen,[737365 737515]);

If the user is not interested to any previously known offsets, it is possible to obtain the same results

achieved by means of InspectOffsetSearch using StaVelMain directly with the option

2 The time series inspection and possible removal of time series sections can be carried out before or after the offset

recognition. In this tutorial, the second approach is preferred, in which it is possible to observe the time series and make

decisions on identifying offsets and removing any problematic time series segments at the same time. Clearly, if the

inspection and eventual removal of time series segments are carried out before the search for offsets, the mom files to be

updated are the raw ones (in this case, the fourth input argument for the tsSegmentRemoval function must be the

string 'Raw').

 33

OptAct = [3 2] (or interactive equivalent), i.e. the command line is

COut=StaVelMain('SampleStations.txt',[3 2],OptsGen). It is emphasized that

this involves the loss of any previous information on offsets. The maintenance, if required, of

previous data on offsets, possibly to be integrated by manual search, is the characterizing element of

the InspectOffsetSearch function.

5.4 Outlier recognition, trend computation and evaluation of results

The data needed to complete the station velocity calculation are now available. To do this, the

required command line is (OptAct 6)

COut=StaVelMain('SampleStations.txt',6,OptsGen);

(or, in MATLAB, the corresponding choices can be interactively taken).

Equivalently, it is possible to proceed first to search for outliers (OptAct 4), and then to compute

velocities (OptAct 5).

As velocity data are available, the COut output variable is filled.

As the function works, this information is shown on the MCW for each station (in this case ECNV):

station ECNV, component 0 (E) - outlier removal in progress...

station ECNV, component 0 (E) - outlier removed

station ECNV, component 0 (E) - trend estimation in progress...

station ECNV, component 0 (E) - trend estimated

station ECNV - E, .\Tutorial\ts_files\ECNV.EU.mat tsData file updated

station ECNV, component 1 (N) - outlier removal in progress...

station ECNV, component 1 (N) - outlier removed

station ECNV, component 1 (N) - trend estimation in progress...

station ECNV, component 1 (N) - trend estimated

station ECNV - N, .\Tutorial\ts_files\ECNV.EU.mat tsData file updated

station ECNV, component 2 (V) - outlier removal in progress...

station ECNV, component 2 (V) - outlier removed

station ECNV, component 2 (V) - trend estimation in progress...

station ECNV, component 2 (V) - trend estimated

station ECNV - V, .\Tutorial\ts_files\ECNV.EU.mat tsData file updated

station ECNV, output cell row generated

The tsData file is upgraded for each component.

In the specific case, the output cell variable COut is:

ECNV 733088 735631 37.5956 14.7125 476.23 -1.398 -1.059 -0.372 0.186 0.263 0.283

EDEN 734629 738809 37.5231 14.3035 732.30 -1.996 3.250 -0.182 0.129 0.162 0.240

EIIV 732609 738809 37.5136 15.0821 88.89 0.734 2.372 1.485 0.112 0.114 0.266

GALF 733005 738048 37.7107 14.5665 731.40 -1.984 4.708 0.503 0.112 0.098 0.109

HLNI 734185 738809 37.3486 14.8719 133.272 -1.022 4.566 -0.048 0.053 0.090 0.153

The 12 columns are, in the order: station name; initial time (MATLAB serial form); final time;

latitude (°); longitude (°); ellipsoidal elevation (m); East velocity (mm/y); North velocity (mm/y);

Vertical velocity (mm/y); East velocity standard deviation (SD) (mm/y); North velocity SD (mm/y);

Vertical velocity SD (mm/y).

It is possible to evaluate the obtained results by showing the time series and the modeled trends, i.e.

the content of the mom files obtained by calculating the trend. The suitable function is showMom

(please type help showMom on MCW for more information about this function). To show the

results for all the mom time series and the final model, the command line is

showMom('SampleStations.txt',OptsGen,'mom')

 34

As this function runs, a figure is generated for each station. This fact must be taken into account in

the case of a large number of stations (if necessary, it may be advisable to split the contents of the

station file).

The results in the case of HLNI station are shown in Fig. 5.6.

Figure 5.6 Mom time series and modeled time series for HLNI station.

The results seem to be satisfying for all the stations, except EDEN, for with a segment deletion and

the introduction of offsets is required (this is left to the reader for exercise).

If the user wants to see the time series of all the mom files, including raw, observation and

preprocessed, the command line is

showMom('SampleStations.txt',OptsGen,{'raw','obs','pre','mom'}).

If there are several stations and the user wants to see the time series for a station only, he/she can use

showMom and redefine the file including the name of this station only, or use the function

showMomSingle. In the case of HLNI, to show the mom time series and the model, i.e. to obtain

the same result in Fig. 5.6 for this specific station, the command line is

showMomSingle('HLNI','.EU','Tutorial/mom_files','mom');

The different syntaxes of showMom and showMomSingle should be noted. Please refer to the

corresponding helps for more information.

5.5 Velocity exportation to GridStrain

The obtained data can be exported to GridStrain by means of geneGSFile function (please

see Subsection 4.5 or type help geneGSFile on the MCW). In order to generate the ASCII file

‘TutorialVel.txt’ with the station names (sixth input argument: is 1) starting from the cell variable

provided by StaVelMain COut, with the horizontal components only (second input argument: 2),

with minimum time series length 4.5 y, the command line is:

CCompl=geneGSFile(COut,'TutorialVel.txt',2,4.5,'33N',1);

This function also requires the choice of the UTM zone. This because GridStrain is

incompatible with geographic coordinates but requires data expressed in a projected coordinate

system. To obtain the results, the function wgs2utm by Alexandre Schimel (MetOcean Solutions

Ltd, New Plymouth, New Zealand) is also used.

 35

The output file shows these data:

ECNV 474617.6995 4160988.0314 -1.39845 -1.05895 0.186270 0.263388

EDEN 438454.0056 4153130.0115 -1.99602 3.249760 0.128591 0.161566

EIIV 507254.3131 4151853.8595 0.733491 2.371800 0.111879 0.113773

GALF 461792.5148 4173805.6890 -1.98372 4.707620 0.111877 0.0982456

HLNI 488658.5567 4133547.8445 -1.02225 4.565980 0.0529152 0.0902596

If the data are loaded within GridStrain, the resulting velocity vectors are in Fig. 5.7 (to obtain

this figure, the files TutorialMap.jpg and TutorialMap.mat must be placed in

GridStrain main folder together with the file generated by means of geneGSFile).

Figure 5.7 Velocities obtained with the tutorial, together with their 2-sigma (i.e. 95%

confidence level) error ellipses (EU plate, WGS84UTM33 reference frame).

 36

6. List of StaVel MATLAB functions

The list of MATLAB functions/scripts/objects is shown here. Besides the file name, a very brief

description is shown for each function. The corresponding help can be seen by typing

help (function name)

on the MCW. For example, in the case of StaVelMain, the help can be accessed by typing

help StaVelMain

The main functions, which should be directly managed by the user in the standard StaVel

computations, are highlighted with bold font. The other functions are generally called by the main

functions, but can also be used in an autonomous way (please see the help for the allowed syntaxes).

Please note that, if the toolbox is used under GNU Octave, some interactivities could be not allowed,

i.e. the complete command lines should be used.

addfromStruct Adding values to an object from a struct array

CMEstackFiltering Common mode error stack filtering

ctlFileEdit Editing a .ctl file (Hector control file)

date2gpsw GPS week and day computation from date

detrendZeroMean Computing detrended, zero mean time series

frac2MJD Fractional year date to MJD conversion

frac2serial Fractional year date to MATLAB serial date conversion

geneGSfile Generation of a .txt file for GridStrain

geneOpts Generation of struct variable for StaVel options management

geneTrendFile Generates an Excel .xlsx file of GNSS station trends (this function is

not used by StaVelMain but is proposed for those users who want

to export the data to Excel).

GetLonLat Get geodetic coordinates from Nevada Geodetic Laboratory (this

function provides data only if the computer is online)

GetNevada Download one or more GNSS timeseries from Nevada database

(this function provides data only if the computer is online)

gpsw2serial GPS week/day to serial date conversion

InspectOffsetSearch Inspection of several GNSS time series and offsets search

InspOffsetMom GNSS time series inspection and manual offset detection for a single

station

jsonRead Read a JSON file

Leapy Search of leap years

MJD2frac MJD to fractional year date conversion

MJD2serial MJD to MATLAB serial year date conversion

MosMom2MosNeu Conversion of a Mos matrix (i.e. an offsets matrix) from mom

notation to CATS Neu notation

MosMomGen Generation of a Mos matrix (mom notation) from a tsData object

OptsGenLoad Interactive load of a StaVel options file

NevadaAllSteps Takes all steps from Nevada database

readStationList Read station list from an Excel or an ASCII file

searchFilledFields Search of filled fields of a struct or an object

serial2frac Date conversion from serial to fractional year

 37

serial2MJD Date conversion from serial to MJD

serial2YMD Date conversion from serial to YYMMMDDD

showMom Show mom time series (several stations)

showMomSingle Show mom time series (single stations)

StaVelMain Main StaVel function

TrendExt Hector/CATS-based trend evaluation and data extraction (function

not used by StaVelMain but added for the users who want use

CATS instead of Hector)

TrendExtJSON Trend extraction from a JSON file generated by Hector

tsData Generation of a tsData object

tsDataFileIn Access to a tsData file

tsSegmentRemoval Removal of one or more time series segments

txtReadData Header and data extraction from a txt file

txtWriteData Header and data write to a txt file

verCoorLonLat Verification and correction of lon/lat/height coordinates

wgs2utm Coordinate conversion from WGS84 to UTM (external function by

Alexandre Schimel, MetOcean Solutions Ltd, New Plymouth, New

Zealand).

wlinfit least square straight line fit

writeNeuMom Write one or more .neu/.mom files for CATS/Hector

YMD2serial Date conversion from YYMMMDD to MATLAB serial date

 38

7. References

Blewitt, G., Hammond, W.C., Kreemer, C., 2018. Harnessing the GPS data explosion for

interdisciplinary science. Eos, 99, https://doi.org/10.1029/2018EO104623.

Bos, M.S., Fernandes, R.M.S., Williams, S.D.P., Bastos, L., 2013. Fast error analysis of continuous

GNSS observations with missing data. Journal of Geodesy, 87, 351–360.

https://doi.org/10.1007/s00190-012-0605-0.

He, X., Yu, K., Montillet, J.-P., Xiong, C., Lu, T., Zhou, S., Ma, X., Cui, H., Ming, F., 2020. GNSS-

TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software.

Remote Sensing, 12, 3532. https://doi.org/10.3390/rs12213532.

Meschis, M., Teza, G., Serpelloni, E., Elia, L., Lattanzi, G., Di Donato, M., Castellaro, S., 2022.

Refining rates of active crustal deformation in the upper plate of subduction zones, implied by

geological and geodetic data: the E-dipping West Crati fault, Southern Italy. Remote Sensing,

14, 5303. https://doi.org/10.3390/rs14215303.

Nikolaidis, R., 2002. Observation of Geodetic and Seismic Deformation with the Global Positioning

System. PhD dissertation, University of California: San Diego, CA, USA. Available online at:

https://www.proquest.com/pagepdf/304798351?accountid=9652 (last access: 16/11/2022).

Teza, G., Pesci, A., Galgaro, A., 2008. Grid_strain and grid_strain3: software packages for strain

field computation in 2D and 3D environment. Computers & Geosciences, 34 (9), 1142-1153.

Teza, G., Pesci, A., Meschis, M., 2022. A MATLAB toolbox for computation of velocity and strain

rate field from GNSS coordinate time series. Annals of Geophysics, submitted.

Tian, Y., Shen, Z., 2011. Correlation Weighted Stacking Filtering of Common-Mode Component in

GPS Observation Network. Acta Seismologica Sinica 2011, 33, 198–208.

https://doi.org/10.3969/j.issn.0253-37822011.02.007.

Wdowinski, S., Bock, Y., Zhang, J., Fang, P., Genrich, J., 1997. Southern California permanent GPS

geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic

displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research Solid

Earth, 102, 18057–18070. https://doi.org/10.1029/97JB01378.

Williams, S.D.P., 2008. CATS: GPS coordinate time series analysis software. GPS Solutions, 12(2),

147-153. https://doi.org/10.1007/s10291-007-0086-4.

GridStrain

Release 2.0 – November 2022

User’s guide

Giordano Teza Arianna Pesci
Department of Physics and Astronomy,

Alma Mater Studiorum University of Bologna

Istituto Nazionale di Geofisica e Vulcanologia, Bologna,

Italy
Viale Berti Pichat, 6/2, I-40127 Bologna, Italy Via Creti, 1, I-40128 Bologna, Italy

giordano.teza@unibo.it, giordano.teza@gmail.com arianna.pesci@bo.ingv.it

mailto:giordano.teza@unibo.it
mailto:giordano.teza@gmail.com
mailto:arianna.pesci@bo.ingv.it

 2

Table of contents

 page

1 Introduction ……………………………………………………………….…….

Toolbox installation and program running ……………………………..……….

3

2 5

2D version (GridStrain and StrainZero)

3 Options ………………………………………………………………………….. 6

 3.1 GridStrain saved general options ……………..……………..……… 6

 3.2 Initial options, data importation, visualization and management ……….. 7

4 Grid creation and/or modification ……………………...……………………...... 14

5 Definition and/or change of the scale factor …………………………………..... 16

6 Strain computation on the grid nodes and significance evaluation ………........... 17

7 Data visualization ….…………………………….…………..………………...... 20

8 Complementary functions and options: ………………....……………..……….. 27

 8.1 Generation of a background image from a DTM ………………………... 27

 8.2 Data export to ASCII ESRI .asc format ………………………………. 28

9 Strain rate computation without a grid: StrainZero ………………………… 30

3D version (grid_strain3)

10 Data importation in the 3D case ………………………………………..………. 34

11 Strain computation in the 3D case and visualizations ……………..…………… 38

11

References ……………………………………………………………………….

40

 3

1. Introduction

GridStrain is the upgraded version of grid_strain MATLABTM toolbox described in and

Pesci and Teza (2007), which is conceived for easy and quick calculation of the 2D deformation

field (or the 2D deformation rate field) in a region, starting from the displacements (or the velocities)

of a series of observational points adequately distributed in this region. The obtained deformation

pattern is shown as a set of the principal components of the strain (strain rate) calculated on the

nodes of a regular grid whose limits and steps can be chosen by the user. See Teza et al., (2008) and

Pesci and Teza (2007) for a general description of the implemented approach and some examples of

its application on GPS-based, regional scale analysis of a strain field. The computations are

performed in a modified least square approach (MLS), as described in Shen et al. (1996). The

upgraded version is described in Teza et al. (2022) together with an application.

The main changes with respect to the previous releases (i.e. the various versions of grid_strain

toolbox) are:

- The introduction of a struct variable GSS, which can be updated as different GridStrain

stages are executed, whose fields are all the data and results of computations. Although GSS is

used like an object, it is not an object and, therefore, no methods are associated to it;

- Upgraded interactive interfaces. Menu boxes are removed and replaced by user interfaces and

dialog boxes;

- Useless options are removed;

- Upgraded visualization functions;

- Upgraded data saving options. In particular, if ASCII data are to be exported, ArcGIS-like

.asc files can be saved.

The 3D version of GridStrain/grid_strain is grid_strain3. The calculations are

performed in this case on the points of a digital terrain model (DTM). See Teza et al. (2008a) for

further information. The results of an application of both toolboxes to two landslides are presented in

Teza et al. (2008b).

The toolboxes, which are sets of functions called by the main programs (GridStrain.m

and grid_strain3.m respectively), also provide significance evaluations. This because a result

related to a grid node (a DTM point in the 3D case) can be really used only if the observational

points are well distributed around it. In particular, three levels of significance are defined: high, mid

and low, according to the user’s choice (see below).

The typical and simplest sequence to follow is:

) Data logging, visualization and management;

) Grid creation and/or modification;

) Definition and/or change of the smoothing factor d0;

) For each grid point, evaluation of:

• strain rate tensor;

• trace of the strain rate tensor, leading to rate of change in area and rate of normalized

shear;

• second invariant of the train;

• geometric significance of the results;

) Data visualization.

The function StrainZero (computation of 2D strain on a point without grid) is included in

GridStrain toolbox.

 4

These toolboxes are free. The authors require that the use of this software be intended for

scientific use only (no commercial use). If a publication whose results were obtained by means of

this software is accepted for the publication, the toolboxes GridStrain/grid_strain3

and their authors must be cited.

Disclaimer: The authors of these toolboxes accept no responsibility for damages resulting from

the use of these products and makes no warranty or representation, either express or implied,

including but not limited to, any implied warranty of merchantability or fitness for a particular

purpose. This software is provided "AS IS", and the user assumes all risks when using it.

The toolboxes surely run under MATLABTM 2018a or later releases (Some actions aimed at

allowing use with much older versions of MATLAB were however implemented. For example,

whether a figure is an object or not is automatically verified). For any question, or also suggestion,

please contact the authors (the Email addresses are shown in the cover of this user’s guide).

 5

2. Toolbox installation and program running

The toolbox GridStrain is contained in zip file GridStrain.zip. The files should be

extracted and saved in a MATLAB directory whose name should be GridStrain. For example, if

the MATLAB work directory is:

C:\Users\john.doe\Documents\MATLAB\,

the toolbox can be saved and accessed with this path:

C:\Users\john.doe\Documents\MATLAB\GridStrain .

Please note that, if MATLAB operates under an Unix environment, “/”must be used instead of “\”.

If the directory GridStrain is saved in the default directory on which MATLAB command

window operates, the directory change must carried out before the toolbox run. This change is

obtained simply typing on the MATLAB command window (MCW):

cd GridStrain

The program runs by typing

GridStrain

on this MCW. All the necessary functions are automatically called by the principal program. The

toolbox runs on different platforms (Windows, Linux).

The grid_strain3 toolbox is contained in the directory grid_strain3, compressed in

the zip file grid_strain3.zip.

In order to call the program whichever is the current MCW directory, a startup file can be

written by the user. For example, if the GridStrain toolbox is placed in the directory

‘C:\Users\john.doe\Documents\MATLAB\GridStrain’, grid_strain3 is placed in

the corresponding directory and Windows is the operating system, the rows

addpath 'C:\Users\john.doe\Documents\MATLAB\GridStrain;

addpath 'C:\Users\john.doe\Documents\MATLAB\grid_strain3'

should be added to the startup.m script. If a file named startup.m is placed in the MATLAB

work directory, it is automatically executed at each MATLAB start. In this way, all the defined

search paths are automatically added at each MATLAB start and the directory changes to use

GridStrain and grid_strain3 are unnecessary. The functionalities of these toolboxes do not

depend on user’s choice about the startup. More information about addpath function in a startup

file can be found in http://www.mathworks.it/it/help/matlab/ref/ addpath.html.

Another option is the use of the Set Path dialog box, which appears by typing

pathtool

on the MCW or by selecting Set Path in Home menu of MATLAB desktop. The button Add

Folders allows the choice of the folder and other buttons allow the choice of the folder order for

the search of the files. Please see http://www.mathworks.it/it/help/matlab/matlab_env/using-the-

matlab-search-path.html to have more information about the Set Path dialog box.

All provided functions are MATLAB .m files that can the opened and, if necessary, modified

by the user. In this way, an expert user can modify, for example, the data saving options.

http://www.mathworks.it/it/help/matlab/ref/%20addpath.html
http://www.mathworks.it/it/help/matlab/matlab_env/using-the-matlab-search-path.html
http://www.mathworks.it/it/help/matlab/matlab_env/using-the-matlab-search-path.html

 6

2D version (GridStrain and StrainZero)

3. Options

3.1 GridStrain general saved options

The GridStrain general saved options are managed by means of GridStrainOptions

function.

Two possible syntaxes are allowed:

GridStrainOptions

Options=GridStrainOptions

Figure 3.1 Interactive management of GridStrain options

If no output is considered, a modal box (Fig. 3.1) allows the management of main options related

to GridStrain and save the file GSOptions.mat.

If an output is considered, no modal box is shown. In this case, if the file GSOptions.mat

exists, the options related to this file are used. If the file GSOptions.mat does not exist, the

default choices are used.

Options:

Option Possible values Default value
Options.VisualizePoints true / false true

Options.VisualizePointIDs true / false true

Options.VisualizeGridHSA true / false true

Options.VisualizeContourHSA true / false true

Options.Function
'exp'/'gaussian'

'inverse square'
'exp'

where

Options.VisualizePoints is referred to the visualization of experimental points in strain

plotting (i.e. this option does not apply in plotting for data loading and possible selection and

removal of some stations);

 7

Options.VisualizePointIDs is referred to the visualization of point IDs (numeric or

station name, depending on input file) in both dataload and strain plotting (in the case of strain

plotting, this option acts under the condition that Options.VisualizePoints is true);

Options.VisualizeGridHSA is referred to the grid visualization in case of plotting in high

significance areas (or high and mean significance areas);

Options.VisualizeContourHSA is referred to the visualization of contour plots of strain

in in high significance areas (or high and mean significance areas);

Options.Function is referred to the choice of the function, i.e. 'exp' for exp⁡(−𝑑/𝑑0),

'gaussian' for exp⁡(−(𝑑/𝑑0)2) and 'inverse square' for 1/[1 + (𝑑/𝑑0)2].

If the user interactively selects two incompatible choices (e.g. both true and false for

VisualizePoints), the corresponding default value is used. In the no-choice case, all default

values are used.

3.2 Initial options, data importation, visualization and management

When the program starts an interactive window appears and the user can import a new data file or

use previously saved data.

Figure 3.2. Top: the first menu interface. Bottom: dialog box for ASCII filename choice.

After the choice of the initial option, if an option different from “EXIT FROM

GRIDSTRAIN” is chosen, a second interactive window allows the choice of the general saving

option (Fig. 3.3). In this way, the user can choose one of the following options:

• Automatic data saving with a defined name of the generated files. In this case, the

filenames are automatically generated. If, for example, CommonPart is the string chosen

by means of a input dialog box which appears if the selected option is “AUTOMATIC

DATA SAVING WITH A DEFINED NAME”, the automatically generated files are

CommonPart2DG.mat (grid data) and CommonPart2DSFxxx.mat, where xxx is the

chosen scale factor (e.g. 10000 if the scale factor is 10000 m, i.e. 10 km).

• Data saving with filenames interactively managed.

• No saving. In this case, the saving function is always excluded.

 8

Figure 3.3. Data saving options.

After the choice of the data saving option, if the chosen initial option is “NEW

CALCULATION OF BOTH GRID AND STRAIN FIELD”, a combo box allows the choice of

the input file name (Fig. 3.4), that must have ASCII format. The ASCII file

tutorialData2.txt is added to the toolbox for tutorial purposes.

Figure 3.4 Interactive choice of the input ASCII file

There are some options for the input file. It can be a 10-column numerical matrix. The columns

represent the data (with this order):

1 ns station identifier (an integer number)

2 e east coordinate, expressed in m

3 n north coordinate, m

4 ve east velocity (or east displacement) expressed in mm/y (or mm)

5 vn north velocity (or north displacement) mm/y (or mm)

6 eve root mean square (rms) error on ve, mm/y (or mm)

7 evn rms error on vn, mm/y (or mm)

8 a length of major half-axis of error ellipse, mm/y (or mm), optional

9 b length of minor half-axis of error ellipse, mm/y (or mm), optional

10 theta azimuth of major axis of error ellipse, degrees, optional

The last three columns are optional. If the file contains 7 columns only, the error ellipses are

assumed to have the axes parallel to east and north direction respectively, with half-axes length

simply expressed by eve and evn. If the number of columns is smaller than 7, the data load cannot

 9

be performed. In this case, the choice of other filenames is possible. Although the coordinates are

conceived as expressed in m and the displacements in mm, a check is performed in order to detect

if the displacements are expressed in m instead. If this fact is suspected, a menu box in shown to

allow the confirmation or exclusion of this suspect (the user is always guided in each choice).

Another option on the input ASCII file is:

1 statName station name (four characters string)

2 e east coordinate, expressed in m

3 n north coordinate, m

4 ve east velocity (or east displacement) expressed in mm/y (or mm)

5 vn north velocity (or north displacement) mm/y (or mm)

6 eve rms error on ve, mm/y (or mm)

7 evn rms error on vn, mm/y (or mm)

8 a length of major half-axis of error ellipse, mm/y (or mm), optional

9 b length of minor half-axis of error ellipse, mm/y (or mm), optional

10 theta azimuth of major axis of error ellipse, degrees, optional

Figure 3.5 Upper panel: distribution of the input displacements (or velocity)

uncertainties, shown for a possible error-based thresholding. The Gaussian model of the

distribution is also shown (obviously, in the specific case such a model is inadequate

because a strong tail exists. Each result provided by GridStrain requires an

interpretation. No abilities in Computer Science are necessary, but a good knowledge of

the studied phenomenon, as well as of basic statistics, is required). Lower panel:

threshold definition (this dialog box appears if “DEFINE AN ERROR THRESHOLD” is

selected)

Obviously, also in this case the columns can be 7 instead of 10. As the input file is loaded, the

distribution of displacements (or velocity) errors is shown (Fig. 3.5) together with a user interface

 10

(UI) control for the choice of an optional error threshold (Fig. 3.5, top). In this way, the user can

define a lower threshold for the uncertainties of the experimental points (EPs) by acting on an

input dialog box (Fig. 3.5, down). This threshold is referred to the squared sum of the x- and y-

component errors. In particular, if the user defines a threshold, for the EPs whose squared sum of

the displacement (or velocity) uncertainties are lower than this threshold, the uncertainties for

both the components are now equal to such a threshold. The uncertainties related to the EPs

whose squared sum of the x- and y-component errors are higher than the threshold are the initial

values instead. Finally, a menu box allows the conformation of the threshold, the choice of a

different threshold, or also the exclusion of the threshold. The corresponding Gaussian

distribution of probability density is also shown. It should be noted the fact that, if large part of

the stations have very similar uncertainties, the distribution can be strongly peaked with a low-

significance tail.

The next step is the visualization of the displacement (or velocity) vectors, which are

plotted together with their error ellipses (Fig. 3.6). If the optional error thresholding was carried

out (see above), the error ellipses are the ones defined by such a thresholding. The user can

introduce a background image by acting on a UI control. In order to avoid license issues related

to Google Earth, the background image should be already available and manageable in this way:

- The image is stored as a JPEG or a TIFF file with a filename like, e.g.,

‘MyBGImage.jpg’;

- a MATLAB .mat file having the name ‘MyBGImage.mat’, i.e. the same name of the

image file but extension .mat, having a variable ALI whose value is the vector

[Xdatamin, Xdatamax, Ydatamin, Ydatamax] with the coordinates of the

vertices of the area represented by the image, expressed in the same reference frame of the

input velocity data.

If a background image is used, the axis limits are the ones of the input velocities, regardless to the

limits related to the field ALI (see Figures 3.7 and 3.8). The filename of the input MATLAB file

or of the image file can be interactively managed in the standard way by means of a combo box

(in the second case, the name of the file carrying the struct variable must be the same of the

image file, clearly unless file extensions).

Figure 3.6 Velocity field and possible choice of a background image

 11

Figure 3.7 Example of background

image, whose area is significantly

higher than the one related to the

velocity vectors (please see Figs. 3.6

and 3.8)

Figure 3.8 Velocities (with corresponding error ellipses) drawn on the background image

A complementary function allows the direct generation of a background image (included

the struct variable above described) starting from an ASCII .asc digital elevation model (DEM)

in ESRI format exported from a GIS software (please see the description of gs_refDTMImage,

Chapter 8).

The input data are managed by means of gs_dataload function, which is automatically

called by GridStrain. The function can be used autonomously. The valid syntaxes are

GSS=gs_dataload

GSS=gs_dataload(filena)

 12

where filena is the input ASCII file. If filena is undefined or empty, the filename can be

managed in an interactive way. Please type help gs_dataload on MCW for more

information.

Regardless to the fact that gs_dataload is called by GridStrain or is used in

autonomous way, the struct variable GSS is generated. The generation of GSS variable is the

main innovation with respect to the grid_strain releases. In this first GridStrain stage,

the GSS fields are:

StationID (empty if statName is the first column in the input file)

StationName (empty if ns is the first column in the input file)

East

North

EastVelocity

NorthVelocity

EastVelocityError

NorthVelocityError

ErrorEllipsea (if the input file has 7 columns, it is equal to EastVelocityError)

ErrorEllipseb (if the input file has 7 columns, it is equal to NorthVelocityError)

ErrorEllipsetheta (if the input file has 7 columns, it is a vector of zeros)

RefImageStruct (empty if no a background image is used)

The last field, i.e. RefImageStruct, if non-empty, is a struct variable with two

subfields, i.e. RefImageStruct.Image (name of the background image file, including path)

and RefImageStruct.Vertices (name of the vertices file, including path, see above).

Note that the output velocities and related uncertainties are always expressed in m/y to

allow their direct use in strain computation, regardless to the unit used (m/y or mm/y) in the input

ASCII file, and this despite the fact that the preferred input velocities are in mm/y. Clearly, if

displacements are used, the GSS output data are expressed is mm.

Regardless to the presence of the optional background image, the next step is the optional

removal of one or more EPs. An interactive image allows the choice between “EXCLUSION OF

ONE OR MORE POINTS FROM CALCULATIONS” and “NO POINT EXCLUSION” (Fig.

3.9). If the first option is chosen, the point to be removed can be chosen by means of mouse (the

EP closest to the selected position on the screen is the selected one). The selected EP is

highlighted in a figure and an UI allows the selection confirmation (Fig. 3.10). This operation can

be repeated more times, until at least two data points are available.

Figure 3.9 Optional point exclusion

 13

Figure 3.10 Details on selected point and removal confirmation.

The optional exclusion of one or more EPs is carried out by means of gs_nopoints

function, which is automatically called by GridStrain. This function can also be used in

autonomous way. The valid syntax is:

GSSOut=gs_nopoints(GSS)

where the input struct variable GSS is as in gs_dataload. This function shows the points and

the correspondent arrows and allows the exclusion of one or more points by means of

magnification of the corresponding errors. The field IncludedPoints, whose value is a

logical vector, is added to GSS (the name of the output variable also is GSS if gs_nopoints is

called by GridStrain, an GSSOut if gs_nopoints is called by means of the above

described command line). In particular, npe=GSSOut.IncludedPoints is such that the

point [e(m) n(m)] is included if npe(m) is true and [e(m) n(m)] is excluded if npe(m)

is false instead. If the field IncludedPoints already exists in GSS, the points for which

npei=GSS.IncludedPoints is false are considered to be already excluded.

 14

4. Grid creation and/or modification

The program automatically computes the grid length based on station baselines (in general, on

spacing of the experimental points). The standard deviation of all the inter-distances between

point pairs is computed and proposed as default value. A first grid is shown together with the data

about the grid (Fig. 4.1). Together the grid, both the accepted and refused points in the previous

step are shown. The user can interactively accept or refuse the proposed grid. If the grid is not

accepted, both the grid step and grid size can be modified. In particular, the grid step can be

changed by means of an input dialog box. The grid vertices can be interactively changed by either

selecting the new lower left and the upper right corners on the figure or by means of an input

dialog box. An example of edited grid is shown in Fig. 4.2.

Figure 4.1 Example of default grid

Figure 4.2 Example of edited grid

Among the initial options (Fig. 3.1), the user can choose the option “GRID ALREADY

AVAILABLE, CALCULATION OF STRAIN FIELD”. In this case, the name of file that

contains the grid parameters, generated in previous session of GridStrain, is managed in

interactive way. Note that the user, in this case, can to remove other EPs (with the same

interactive procedure described in Chapter 3), as well as to reintroduce one or more points that

were excluded in the previous session with a similar procedure. Once that the grid configuration

is accepted, the program execution is the same for both the first two options.

 15

The initial grid generation is carried out by means of gs_gridgene function, which is

automatically called by GridStrain. The same main program GridStrain calls the

complementary functions gs_nopoints (exclusion of other EPs) and gs_yepoints

(reintroduction of already excluded EPs). If the grid is already available, GridStrain calls

gs_gridmod to allow possible grid changes.

The function gs_gridgene can also be used in autonomous way with the syntax

GSSOut=gs_gridgene(GSS)

The autonomous use of gs_gridmod is also possible and can be carried out with a similar

syntax.

Regardless to the way in which gs_gridgene is called, these new fields are added to the

input GSS variable, leading to the output GSS variable, whose name is GSS if gs_gridgene is

called by GridStrain, GSSOut if gs_gridgene is called with the above described

command line:

GridReport (string, see below)
XGridStep

YGridStep

XGridNumber

YGridNumber

DownLeftCorner (vector of down left corner coordinates)

TopRightCorner (vector of top right corner coordinates)

An example of GridReport is the string

GRID REPORT

 VERTICES:

 FIRST:(565845.91,4314886.97), LAST:(685845.91,4402886.97);

 NUMBER OF GRID ELEMENTS:

 nx = 16, ny = 12;

 GRID SPACING:

 dx = 8000.00 m, dy = 8000.00 m.

If the automatic data saving was chosen, as the grid is generated and accepted by means of

gs_gridgene or modified and accepted by means of gs_gridmod automatically called by

GridStrain (and possible EP exclusion or reintroduction, always managed by means of

GridStrain, is completed), the GSS variable is saved in the file CommonPart2DG.mat (see

data saving options, chapter 3). If the manual data saving was chosen, the output filename can be

interactively managed. If the data saving was disabled, no data saving is carried out.

 16

5. Definition and/or change of the scale factor

Once the grid satisfies the user preferences, the program automatically defines the smoothing

parameter, or scale factor, for the modification of the least square weighting matrix in an MLS

approach, as in Shen et al. (1996). This default value is defined as three time the grid spacing, but

the user can modify it by means of an input dialog box (fig. 5.1). The scale factor characterizes

the strain calculation. In particular, if data points are widely dense distributed, the local strain can

be estimated at each node of the grid (or also in a defined point) using a weighting strategy to

automatically lower contribution of far stations from the node. All available data are involved in

computation but errors are rescaled using an appropriate function which increases with distance.

Following Shen and Jackson (2000), the weigh function exp(− 𝑑/𝑑0) can be used, where d is

the distance between the node and the grid point and d0 is the smoothing parameter (see 3.1 about

other available scaling functions, i.e. Gaussial and inverse square). Except for the weighting

function, which introduces a scale factor in the weight matrix used in the least square

computations, the approach is exactly the same described e.g. in Livieratos (1980).

Figure 5.1. Definition of scale factor for weighting (default: three times the grid spacing)

 17

6. Strain computation on the grid nodes and significance evaluation

The MLS computation lead, for each grid node, to the displacement gradient L, which is a tensor

and can be written as 𝑳 = 𝑬 + 𝜴, where 𝑬 = 𝜀𝑖𝑗 = (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖)/2 is the strain tensor, 𝜴 = 𝜔𝑖𝑗 =

(𝜕𝑖𝑢𝑗 − 𝜕𝑗𝑢𝑖)/2 is the rotational part of L, 𝑢𝑖 is the displacement 𝑢𝑥 (𝑢𝑦) for 𝑖 = 1 (𝑖 = 2), and 𝜕𝑖 is

the partial derivative operator 𝜕/𝜕𝑥 (𝜕/𝜕𝑦) for 𝑖 = 1 (𝑖 = 2). The strain tensor is symmetric and

represents the internal deformation, whereas 𝜴 is antisymmetric and represents a rigid body motion.

The formulas are

𝑳 = [

𝜕

𝜕𝑥
𝑢𝑥

𝜕

𝜕𝑦
𝑢𝑥

𝜕

𝜕𝑦
𝑢𝑦

𝜕

𝜕𝑦
𝑢𝑦
] = 𝑬 + 𝜴, (6.1)

𝑬 = [

𝜕

𝜕𝑥
𝑢𝑥

1

2
(
𝜕

𝜕𝑦
𝑢𝑥 +

𝜕

𝜕𝑥
𝑢𝑦)

1

2
(
𝜕

𝜕𝑦
𝑢𝑥 +

𝜕

𝜕𝑥
𝑢𝑦)

𝜕

𝜕𝑦
𝑢𝑦

] = [
𝑒11 𝑒12
𝑒21 𝑒22

], (6.2)

𝜴 = [
0

1

2
(
𝜕

𝜕𝑦
𝑢𝑥 −

𝜕

𝜕𝑥
𝑢𝑦)

−
1

2
(
𝜕

𝜕𝑦
𝑢𝑥 +

𝜕

𝜕𝑥
𝑢𝑦) 0

] = [
0 𝜔
−𝜔 0

]. (6.3)

Since the strain tensor E is real and symmetric, it can be diagonalized, i.e. there exists an

invertible matrix V wherein 𝑬𝒅 = 𝑽−1𝑬𝑽, where 𝑬𝒅 is a diagonal matrix. The eigenvalues 𝑒max

and 𝑒min are the maximum and minimum principal strain respectively. The maximum (minimum)

strain is the change of length per unit-length in the direction of maximum (minimum) extension,

positive for extensions. In the reference frame having origin in the grid node and whose unit vectors

are the orthonormal eigenvectors, no shear deformation is present and variations occur along the

principal axes only.

The GridStrain toolbox computes, for each grid node, the eigenvalues 𝑒max and 𝑒min, the

principal directions (i.e. the corresponding normalized eigenvectors), the displacement and the rigid

body rotation, i.e. 𝜔 in (6.3). Once a scale factor is available, the program starts the strain rate

estimation over each grid node. The redundant equation system is estimated according to a standard

linear least square approach where the weight function is introduced to provide an error scaling as

described in Chapter 5.

In addition, the geometric significance of the results is evaluated in order to recognize the

grid nodes where the results are really representative of the local strain for the chosen scale

factor. The corresponding flag field is generated. In particular, to each grid node is associated a

flag indicating if:

• The grid node has high significance (flag 2). In this case, in each of the three 120°-width

regions in which the plane can be subdivided there exists at least a data point whose

distance from the grid point is lower than (or equal to) the scale factor. The spatial

distribution of the data points around the grid point is in this case in good.

• The grid point has mid significance (flag 1). In this case, in two of the three 120°-width

regions in which the plane can be subdivided, there exists at least a data point whose

distance between the grid point is lower than (or equal to) the scale factor. The spatial

distribution of the data points around the grid point is in this case near to validity, but the

estimate value of the strain is not completely representative of the compressive and/or

tensional state of the area (insufficient data points, but situation not completely bad).

• The grid point has low significance (flag 0). In this case, the result cannot be used.

 18

The computations are carried out by gs_itera function, which is automatically called by

GridStrain. The function gs_itera can laso be used in autonomous way; in this case, the

syntax is

GSSOut=gs_itera(GSS,d0)

where GSS is a GSS struct variable with the information about the grid (see Chapter 4) and d0 is the

scale factor. This function automatically calls the sub-function gs_strain for each grid node (the

use of gs_strain as autonomous function is not recommended).

Regardless to the fact that gs_itera is automatically called by GridStrain or manually

called by the used with the command shown above, these new fields are added to the resulting GSS

struct variable:

MaxStrainMatrix maximum strain matrix

MinStrainMatrix minimum strain matrix

AzimuthStrainMatrix matrix of azimuth, i.e. angle between north direction and

maximum strain vector

MaxStrainMatrixError error on maximum strain

MinStrainMatrixError error on minimum strain

NumberMatrix if numb=GSS.NumberMatrix, numb(m,l) is the number

of experimental points whose distance from the grid node

[X(m,l),Y(m,l)] is smaller than or equal to d0

ComputationFlag is 1 in the grid nodes where the strain is actually computed, 0

otherwise

SignificanceFlag Flag on significance.

Let FLS be GSS.SignificanceFlag;

- It is FLS(m,l)=2 if all the three sectors with 120° angular

width around the grid node [X(m,l),Y(m,l)] contain

at least one experimental point whose distance by this grid

node is lower than or equal to d0 (HIGH

SIGNIFICANCE GRID POINT CASE).

- It is FLS(m,l)=1 if two sectors contain at least one point

as above (MID SIGNIFICANCE GRID POINT CASE).

- It is FLS(m,l)=0 otherwise (LOW SIGNIFICANCE

GRID POINT CASE).

Obviously, FLS is 0 in the grid nodes in which FLC=0, where

FLC=GSS.ComputationFlag.

UTranslation matrix of velocity/translation East components

VTranslation matrix of velocity/translation North components

UTranslationError error on UTranslation

VTranslationError error on VTranslation

Rotation for each grid node, it is the non-zero component of the rotation

antisymmetric matrix

 19

RotationError error on Rotation

If, before the strain calculation, GSS already has the fields related to strain rate data because a

previous session of GridStrain (or gs_itera) was carried out, the corresponding values are

overwritten without any warning message.

As the computations for a defined scale factor are completed, if user did not excluded the data

saving, the output GSS variable is saved. In case of automatic data saving, if the chosen filename

common is, for example, MyStrainData, and the scale factor is 30 km, the name of the generated

GSS file is MyStrainData2DSF30000.mat.

 20

7. Data visualization

The next GidStrain step is data visualization. An interactive figure (Fig. 7.1) allows the choice of

visualization; the data can be shown in all grid nodes, in high significance grid nodes only and in

high and mean significance grid nodes.

Figure 7.1 Choice of visualization option.

If an option different from “NO PLOTS” is chosen, the fist plot is the contour map of

significance areas. An example is shown in Fig. 7.2. A continuous line represents the boundary of

the high significance area.

If a background image was selected (see Chapter 3), it is shown in all plots. Moreover, in each

plot the scale factor used in the computations is shown in the figure title.

Figure 7.2 Geometric significance plot

These plots are shown:

1. Strain rate field. The eigenvectors are shown with their directions and two colors: if an

eigenvalue is positive (extension) the color is blue, whereas the color is red in the case in

which the eigenvalue is negative (compression). The arrow lengths are proportional to the

absolute values of the corresponding eigenvalues (strictly speaking, an eigenvector is a unit

vector). For representation purposes, the vector scale is such that the longest vector has

length equal to the grid step. This plot also allows the selection of a grid node and the

 21

presentation of the corresponding results (see below about the grid node data that can be

shown) as well as an area selection. If the user choose the visualization of strain rate in both

high and mean significance areas, the eigenvectors in the mean significance areas are

shown with dashed lines (Figs. 7.3-7.5).

2. Contour plot of rate of change in area. For each grid node, it is the trace of the strain tensor,

i.e. 𝑒max + 𝑒min, where 𝑒max and 𝑒min are the maximum and minimum eigenvalue

respectively (Fig. 7.6). This plot allows the characterization of the kinematics areas.

3. Contour plot of the prevailing eigenvalues (Fig. 7.7), i.e., for each grid node, the eigenvalue

having the highest absolute value.

4. Contour plot of the normalized shear rate, i.e. of engineering shear normalized to the

change in area. It is (𝑒max − 𝑒min)/(𝑒max + 𝑒min⁡). Note that values near zero characterize

strain tensors whose components are comparable in modulus, while values near ±1 are

characterized by the predominance of a component on the other (Fig. 7.8). This plot allows

the characterization of boundaries between different kinematic areas.

5. Contour plot of the second invariant of the strain rate, i.e. √𝜀𝑥̇𝑥2 + 𝜀𝑦̇𝑦2 + 2𝜀𝑥̇𝑦2 =

√𝜀ṁax
2 + 𝜀ṁin

2 , which represents the magnitude of total strain rate (Fig. 7.9).

6. Contour plots of the relative error on maximum and minimum strain, drawn on the same

figure (Fig. 7.10). In order to avoid saturation effects due to areas characterized by very

high errors, the contour plots of log10(𝜎𝑒max/|𝑒max⁡⁡|) and log10(𝜎𝑒min/|𝑒min|)⁡ in the high

and mid significance areas are shown.

7. Plots of strain rate field (i.e. eigenvectors) overlapped on contour plots of prevailing

eigenvalues in the high significance areas and in the high and mean significance areas,

drawn in the same figure (Fig. 7.11).

8. Vectors of local rigid-body translation field (Fig. 7.12). Please note that the interpretation

of this plot is not straightforward, and is scale factor dependent. For example, a very high

scale factor is chosen, the result is the velocity field in uniform strain conditions.

Note that the figures 1-5 and 7 (i.e. Figs. 7.3-7.10 and 7.12 shown below) are drawn

according to the user’s choice about the strain on the grid nodes, i.e. all grid nodes, high

significance nodes, high and mean significance nodes. Figure 6 (i.e. Fig. 7.11 shown below) is

the same whichever is the option chosen about the data representation instead.

Figure 7.3 Example of strain rate field representation in all grid nodes. Note the

different colors and orientations of the vectors.

 22

Figure 7.4 Example of strain rate field representation in high significance grid nodes.

Figure 7.5 Example of strain field representation in high (solid lines) and mean

(dashed lines) significance grid nodes.

Figure 7.6 Example of rate of change in area contour map

 23

Fig. 7.7 Contour plot of prevailing eigenvalue.

Figure 7.8 Contour plot of rate of engineering shear normalized to the change in area.

Figure 7.9 Contour plot of second invariant of the strain rate.

 24

Figure 7.10 Contour plots of relative errors on strain computation, expressed as logarithms.

Figure 7.11 Strain rate fields in high (left panel) and high-mean significance areas

(right panel) overlapped to the contour maps of prevailing eigenvalue.

Figure 7.12 Velocity field estimated from strain field.

 25

Figure 7.13 Example of data about a selected grid node.

As mentioned above, the program allows, at this stage, the interactive selection of one or

more points and the visualization of the corresponding strain rate by acting on the figure which

represents the strain rate field. No more computations are carried out; the data about the nearest

grid node to the selected point are shown. If the user wants to have the data about a well-defined

point, regardless to the grid used for GridStrain computations, must use the StrainZero

program instead of GridStrain (see Chapter 9). The results of this selection are

contemporarily shown in a menu box and in the command window (note that no commands are

typed using this command window after the program initialization; it is used for visualization

only). An example of visualization of these results is shown in Fig. 7.13 (this visualization is

repeated on the MCW). The shown data are: coordinates of the nearest grid point, strain

eigenvalues, angle for the definition of the direction of the first strain eigenvector, rate of change-

in-area, rate of normalized shear, geometric significance of the results, scale factor, and rigid-

body kinematic parameters (velocity and rotation).

Figure 7.14 Polygonal area selection.

The user can also interactively select an area and visualize the mean values in this area

(option SHOW MEAN RESULTS IN A SELECTED POLYGONAL AREA, Fig. 7.5). An

 26

example of interactive selection, carried out by means of mouse (right button) is shown in Fig.

7.14. To complete the selection and acquire the polygon vertices, the used should use the return

button on keyword (please note that the last acquired vertex is the one selected with the last righ-

selected by mouse. An example of visualization of the corresponding results is shown in Fig.

7.15.

Figure 7.15 Example of results of polygonal area selection.

The visualization of strain data on a selected grid point and/or a selected area can be

repeated as many as the user wants.

The data visualization is carried out by means of gs_strashow function, which is

automatically called by GridStrain. This function can also be used in autonomous way. The

valid syntaxes are

gs_strashow(GSS)

gs_strashow(GSS,visScale)

The input argument visScale defines the scale of representation. If it is undefined or empty, it

is

visScale=min(dx,dy)/max(mean(abs(EMAX(:))),mean(abs(EMIN(:)))),

where dx, dy, EMAX and EMIN are taken from GSS.

As the visualization managed by means of GridStrain is completed, the user can choose

a different scale factor and repeat the calculations. Please note that this option is also available if

GridStrain is used to display existing strain rate data. If the data visualization is carried out

by calling gs_strashow with a command line, no other scale factors can be considered in the

same session.

 27

8. Complementary functions and options

Some complementary functions are available in order to allow the implementation of some

activities:

- Generation of a background image from a DTM;

- Data exportation in ESRI .asc ASCII format.

8.1 Generation of a background image from a DTM

A background image can be used for all the GridStrain visualization. As described in Chapter

3, the background image should be already available and manageable by means of two files:

1. A JPEG or a TIFF image file with a filename like, e.g., 'MyBGImage.jpg';

2. A MATLAB .mat file having the same name of the image file but extension .mat,

(e.g. 'MyBGImage.mat') with the field ALI whose value is the vector

[Xdatamin, Xdatamax, Ydatamin, Ydatamax] with the coordinates of

the vertices of the area represented by the image, expressed in the same reference

frame of the input velocity data.

If a DTM file in ESRI .asc format (see 8.3 for more information about this format) or in

GeoTiff .tiff format1 provided by a GIS package is available, a complementary function

allows the generation of these two files. This function is gs_genDTMImage; the syntax is:

ALI=gs_GenDTMImage(filenaDTM,OtherNoData,OutName)

The input arguments are:

filenaDTM name of input ESRI .asc file or GeoTiff .tiff file. If it is undefined

or empty, the filename can be interactively managed;

OtherNoData possible second no-data value (the file already has a no-data value.

However, the generation of a DTM by adding different sources could

lead to a second no-data value in elements of the DTM for which there

are no sources). If it is undefined or empty, no a second no-data value is

considered;

OutName name of the output files. If it is undefined or empty, the default name

'refDTMIm' is used. If OutName includes the extension, it is used

for the image file (allowed extensions: '.jpg', '.jpeg', '.tif',

'.tiff'). If OutName does not include the extension, '.tif' is

used. In each case, the second generated file has the same name of the

image one (except for the extension);
OptSea

option about sea. If it is true or is the string 'light' or 'dark', the

sea (DTM level zero) is colored in blue. In particular, if OptSea is

'light' or 'dark', the sea is in light blue or dark blue respectively.

If OptSea is simply true, 'light' is used. If OptSea is undefined,

empty or false, the DTM is drawn as a grey-level image using all valid

data.

1 Please note that the output files are an image (jpeg or tiff) and a MATLAB .mat file with the georeferencing data. In

particular, if the output image is a tiff file, it is a standard RGB image. If the input file is a GeoTiff image, even if the

extension is the same, its nature is completely different; it is a DTM, i.e. a matrix with the parameters necessary to

georeferencing the grid nodes and reconstruct the elevations. It is therefore important to avoid confusion between two

types of different objects (images and DTMs) even if they can be represented by files with the same extension.

 28

The output variable is ALI=[Xdatamin, Xdatamax, Ydatamin, Ydatamax], taken

from the header of the input file.

Depending on the options chosen by the user for generating the output image, this function

can make use of the external function customcolormap by Víctor Martínez-Cagigal,

Biomedical Engineering Group (University of Valladolid), Spain (download page:

https://it.mathworks.com/matlabcentral/fileexchange/69470-custom-colormap), which is added to

GridStrain toolbox.

The user can customize the function gs_GenDTMImage or write a script using this

function as a reference in order to solve his/her specific problem of generating a background

image, for example in order to represent the sea level with a specific color (e.g. light blue

[171,205,239]). The GridStrain developer is available to provide assistance in the

eventual creation of a customized function or script, provided that the objective of the toolbox use

is scientific research (email: giordano.teza@gmail.com, giordano.teza@unibo.it) .

8.2 Data export in ESRI ASCII .asc format

The GSS struct variable can be saved in a MATLAB .mat file. As above mentioned, the data

saving can be also carried out in automatic way. However, the user may want to export the output

data in ASCII format. In order to allow this, the gs_saveAsc function is available. The

corresponding syntax is

gs_saveAsc(GSS,CommonPart,optVec)

This function allows the saving of data related to a GSS struct variable. Each generated file is an

.asc ASCII file in ESRI DTM style, with a six rows header and a data matrix. The header is:
ncols xxx

nrows xxx

xllcorner xxx

yllcorner xxx

cellsize xxx

NODATA_value xxx

where

- ncol and nrows are the integer number of grid lines along X-axis and Y-axis

respectively (taken from the matrices stored in GSS);

- xllcorner and yllcorner) are the X-coordinate and Y-coordinate of the grid

origin, taken from GSS.DownLeftCorner;

- cellsize is the cell size, taken from GSS.DownLeftCorner and

GSS.TopRightCorner (note that a square grid is required);

- NODATA_value is the value assigned to NaN matrix elements (default value: -

9999).

If the string CommonPart is assigned, the data saving procedure managed by gs_saveAsc is

completely automatic. In this case, each file has name

(CommonPart)(TypeofData)(ScaleFactor).asc

For example, if CommonPart is 'MyArea', TypeofData is 'MaxStrain' and the scale

factor is 40000 m, the generated file is

MyAreaMaxStrain40000.asc.

If CommonPart is undefined or empty, each data saving is interactively managed.

The input argument optVec is a vector with integer numbers in the range 1:14.

https://it.mathworks.com/matlabcentral/fileexchange/69470-custom-colormap
mailto:giordano.teza@gmail.com
mailto:giordano.teza@unibo.it

 29

If optVec = 1:14, all files are generated. If OptVec=[n1 n2 ... nr], with n1, n2, nr

natural numbers in the range 1:14, the file related to these indices are generated (see below the

list).

If optVec is undefined or empty, a list dialog box allow the choice of the files to be generated

(Fig. 8.2). A multiple choice is allowed; all files can also be generated.

List of files that can be generated:

1. Maximum strain (rate) field

2. Error on maximum strain (rate) field

3. Minimum strain (rate) field

4. Error on minimum strain (rate) field

5. Azimuth strain (rate) field

6. Number matrix

7. Computation flag

8. Significance flag

9. U translation (velocity) field

10. Error on U translation (velocity) field

11. V translation (velocity) field

12. Error on V translation (velocity) field

13. Rotation field

14. Error on rotation field

Figure 8.2 Choice of ASCII files to be generated

 30

9. Strain rate computation without a grid: StrainZero.

It is a simplified version of GridStrain. For a data points file structured exactly as in the case of

GridStrain, it calculates the strain in one or more points. The provided results are like the ones

provided by GridStrain, but the generation of grid and the iteration on it are not performed. In

addition, the user can choose a scale factor or exclude it (in the latter case, an infinite scale factor is

used). Note that this program should be used in those cases where the user wish to have the strain

data on a well-defined point and the nearest grid point is too far from it to allow a meaningful

representation.

Unlike GridStrain, which is a MATLAB script, StrainZero is a MATLAB function. A

function has input and output parameters, whereas the variables on which a script operates are the

ones hard-coded into this script and the variables taken from external files called from the script.

Moreover, all variables created in the script are added to the current workspace. The

StrainZero syntax is

StrainZero(GSS)

The input argument is a GSS variable provided in a GridStrain session, see Chapters 3and 4 of

this User’s Guide (since GridStrain is a script, if ran, GSS is available on the current

workspace). If the user is not interested in evaluating the strain rate field in a regular grid, he can

select “NO GRID GENERATION” in the UI to confirm / modify the grid parameters (Fig. 4.1). No

more than data about positions, velocities, velocity errors (including, if available, error ellipses) and

(optionally) excluded points are required in GSS. All other data in GSS, if available, are ignored by

StrainZero. If GSS is undefined or empty, the name of a file with such a variable can be

interactively managed.

As StrainZero runs, the user can define the scale factor, or use an infinite scale factor (Fig.

9.1). The second option corresponds to the strain computation under uniform strain hypothesis.

Figure 9.1. Choice of the scale factor

The strain can be computed either on the available stations (i.e. on the points whose

coordinates are in the ASCII input data file, also called experimental points), or in interactively-

selected points. Moreover, if at least a point was excluded from the computations, another option is

available; for the experimental points, the strain can be computed either on all the experimental

points on or the kept experimental points only. A menu box allows the choice of the general option

on strain computation (Fig. 9.2).

In the case of computation on user-defined points, three options are available for the point

selection (Fig. 9.3, left): by coordinates (Fig. 9.3, right), by click on plot, or on the center of mass,

i.e. the point whose coordinates are the weighted means of the station coordinates, where the weights

are the inverse squares of the uncertainties.

 31

Figure 9.2. General options on strain computation: left, menu in the cases where no

excluded points exist. Right: menu in the cases where at least a point has been excluded.

Fig. 9.4 shows the results of the StrainZero application to the sample file in the case of the

choice of the computation on the EPs only. Please note that, if an EP is excluded from the

computations, the strain in this point is computed, obviously without the effect of the corresponding

experimental vector. The result in such an EP can be used to estimate the corresponding expected

kinematics without the conditions that led to its exclusion from the strain computation, in particular,

the modeled velocity vector can be compared with the experimental one (see below, in particular

Fig. 9.7).

Figure 9.3. Choice of the estimation point in the case of interactive choice

(left) and example of choice of the point in the case of selection of the option

“by coordinates” (right).

Figure 9.4 Example of computation in the experimental points based on the use of

StrainZero.

 32

Figs. 9.5 and 9.6 show the results of strain computation on a selected point and the

corresponding report respectively (note that the point selection can be repeated how many times the

User wants). Since the velocity field estimated in the experimental points can be compared with the

input velocity data, the corresponding chi-square 𝜒2 is evaluated (see Fig. 9.7 for an example of

velocity comparison. Please note that the EP 32 seems to be an outlier. This impression is well

founded because this EP actually is affected by local motion due to a landslide). If at least a point is

excluded from the computation, such an evaluation can be carried out either on the effectively used

points (suggested option) or on all the experimental points. If no points are excluded, the 𝜒2 is

automatically provided if the option “COMPUTATION ON THE EXPERIMENTAL POINTS” is

chosen. Besides 𝜒2, the reduced chi-square 𝜒𝜈
2 is also computed, where the number of degrees of

freedom, 𝜈, is 2N-6 (N is the number of kept experimental points and 6 is the number of estimated

parameters). The chi-square can be very interesting in those cases where an uniform strain is

modeled, i.e. an infinite scale factor is used. The corresponding report, shown on the MCW, is

CHI-SQUARE COMPUTATION (SCALE FACTOR: Inf):

 COMPLETE: 234.09;

 REDUCED: 5.85;

 DOFs: 40

Figure 9.5 Example of strain computation on a point by using StrainZero.

Figure 9.6 Example of

report on strain computation

on a single point by means of

StrainZero. Please note

that the number of digits

shown is overabundant. To

actually use the data in a

publication, one must

consider that, for example,

the maximum strain is

2.3±1.1 y-1.

 33

Figure 9.7 Example of experimental (blue vectors) and modeled (red vectors) velocities

The StrainZero function also allows the saving of the obtained results as an ASCII file. In

particular, if the options “COMPUTATION ON THE EXPERIMENTAL POINTS” (if no exclusion

is performed) or “COMPUTATION ON ALL THE EXPERIMENTAL POINTS” (if at least a point

has been excluded from the computations), the output file contains a matrix having the same number

of rows of the input ASCII file and these 21 columns:

ns e n ve vn eve evn a b theta Emax Emin eEmax eEmin Phi u0 v0 eu0 ev0 omeg eomeg

where ns e n ve vn eve evn a b theta are defined as in Chapter 3 (please note that a, b and theta are

defined even if they are unavailable in the input file2), Emax, Emin, eEmax and eEmin are the

principal strains and the corresponding errors, Phi is the angle for the eigenvector direction

characterization, u0, v0, eu0 and ev0 are the rigid body translations and the corresponding errors, and

omeg, eomeg are the rigid body rotation and the corresponding error respectively. If at least a point

has been excluded from the computations and the option “Computation on the kept experimental

points only" has been chosen, the file has 21 columns and the rows corresponding to the kept points.

If the computations are carried out on user defined points, a matrix having a number of rows

equal to the number of selected points, and 14 columns is saved. The columns are in this case

k xp yp Emax Emin eEmax eEmin Phi u0 v0 eu0 ev0 omeg eomeg

where k is the row identifier (from 1 to the number of selected points), xp and yp are the coordinates

of each selected point, and the other variables are as above.

2 In this case, it is a = eve, b= evn, and theta = 0, i.e. an error ellipse whose axes are parallel to the East and North

direction is defined.

 34

3D version (grid_strain3)

This program is like GridStrain, with the difference that the strain tensors, now having three

components instead of two, are computed on the points of a digital terrain model (DTM). For this

reason, only the main differences are reported here. However, the current release of

grid_strain3 is like the older releases of grid_strain and, therefore, is not based on the use

of a struct variable like GSS for all the quantities used and elaborated as the main program runs (for

this reason, the old-style name grid_strain3 is used). The upgrade of grid_strain3, leading

to GridStrain3, is planned and is soon to be implemented.

10. Data importation in the 3D case

The ASCII file containing the data of displacements must have 13 columns (the last three are

optional):

 ns (experimental point identifier);

 e (x coordinates, expressed in m);

 n (y coordinates, m);

 z (z coordinates, m);

 ve (x displacements, m);

 vn (y displacements, m);

 vz (z displacements, m);

 eve (rms error on ve, m);

 evn (rms error on vn, m);

 evz (rms error on vz, m);

 a (length of major half-axis of xy error ellipse, m);

 b (lenght of minor half-axis of xy error ellipse, m);

 theta (azimuth of major axis of error ellipse, degrees).

Note that the displacements are now assumed to be expressed in m, since the displacement data

are generally provided by terrestrial laser scanner (TLS), aerial laser scanner, digital

photogrammetry or other topography techniques. This is an important difference between

grid_strain3 and GridStrain. In the case of GridStrain, the displacements are often

obtained by GPS measurements and mm is used as default unit. As in the 2D case, a check on the

used unit is performed, and a menu-message is presented to the user if the data could expressed in an

unit different from the meter.

The optional three columns contain the data about the error ellipses of the x and y components

of the displacements. In this way, if the data are provided by GPS measurements and the error

ellipses are defined, the corresponding information is used3. The function pp_to_gs.m is

conceived for the generation of the ASCII file using the displacements obtained by application of

PAMpoly software to TLS data. The PAMpoly software implements the Piecewise Alignment

method for the displacement field computation starting from two or more multi-temporal TLS

observations (Teza et al., 2007). In this case, the data file for the grid_strain3 execution has 10

columns.

If the user types

3 Generally, in a GPS measurement, the error on the third coordinate is higher than the errors on the first two

ones. The error ellipse is defined on the horizontal plane only.

 35

grid_strain3

on the command window, the program grid_strain3 runs. The general option is shown:

Fig. 10.1. General options menu.

Note that a direct passage to

GridStrain is possible.

The DTM used for the computations must have either the Surfer .grd ASCII format or the

.asc ESRI ASCII Raster format. In all the cases, the data must be space separated (in particular,

comma-separated data cannot be managed). In the Surfer-like case, the DTM data are stored in a

.grd ASCII file whose rows are structured as follows:

id : Identification string, that identifies the file as an ASCII grid file;

nc, nr : integer numbers of grid lines along the x-axis (columns) and y-axis respectively

(rows);
xlo, xhi : minimum and maximum values of x along the grid;
ylo, yhi : minimum and maximum values of y along the grid;
zlo, zhi : minimum and maximum values of z along the grid;

row 6

…

last row
:

row 6 corresponds to ylo and the last grid row corresponds to yhi. Within each

row, the z-values are arranged from xlo to xhi. In other words, the rows 6, 7, …,

last contain the matrix whose elements are the DTM’s elevations.

An ESRI ASCII .asc grid file, generated e.g. by ArcGIS, contains six header lines that

provide information about the size and limits of the grid, followed by the list of Z values. The fields

within ASCII grid files must be space % delimited. The header of an ASCII .asc grid file is:

ncols xxx

nrows xxx

xllcorner xxx

yllcorner xxx

cellsize xxx

NODATA_value xxx

or, alternatively,

ncols xxx

nrows xxx

xllcenter xxx

yllcenter xxx

cellsize xxx

NODATA_value xxx

 36

where

ncols, nrows : integer numbers of grid lines along the X-axis (columns) and Y-axis

respectively (rows);

xllcorner : X-coordinate of the grid origin by lower-left corner of the cell;

yllcorner : Y-coordinate of the grid origin by lower-left corner of the cell;

xllcenter : (alternative with respect to xllcorner) X-coordinate of the grid origin by

center of the cell;

yllcenter : (alternative with respect to yllcorner) Y-coordinate of the grid origin by

center of the cell;

cellsize : Cell size (equal for X- and Y-directions);

NODATA_value : It is the value related to no data cells (NaN in the oputput matrix managed

by MATLAB)). Although the row is compulsory (the header of an ESRI

raster file must have six rows), the value can be omitted. In this case, the

default NODATA_value (-9999) is considered, i.e. -9999.

The headers of the .grd and .asc file related to a same DTM are show below. It should be noted

that the nodata value, -32767, is explicitly shown, and therefore automatically managed, only in the

case of an .asc file.

DSAA

5944 5439

1757839.024 1758189.558

5143731.543 5144052.297

527.815 650.878

ncols 5944

nrows 5439

xllcorner 1757839.024005563

yllcorner 5143731.543726818

cellsize 0.05897279999999135

NODATA_value -32767.000

Please note that:

• In an ESRI ASCII .asc Raster file, the rows from the 7th one are arranged from the

maximum to the minimum y, i.e. the row arrangement is inverted with respect to the case of a

Surfer .grd ASCII file (ESRI: 7-th row: highest y, end row: lowest y; Surfer: 6-th row:

lowest y, end row: highest y). The output MATLAB .mat DTM is arranged as a Surfer

matrix, according to conventions used in MATLAB;

• the main script grid_strain3 (through the function gs_dtmread) automatically

discriminates between a Surfer or an ESRI file on the basis of the extension, .grd in the

first case and .asc in the second one. Since some users adopt the extension .grd for the

ESRI ASCII files, if a grid_strain3 user do not know the origin of a DTM ASCII file,

he should check the header (a warning message is provided if the file header does not

correspond to the expected one);

• a combined use of the functions gs_dtmread and gs_dtmwrite allows a conversion

between a .grd and an .asc ASCII DTM file (see the helps of these functions).

 37

Obviously, other software can be used to generate the DTM, but the data must be arranged

either in Surfer ASCII or in ESRI ASCII raster format. Since the ASCII file containing the DTM

data is read by using the standard MATLAB function dlmread, non-zero values are assumed to

represent the elevations (zero-values are assumed to be related to empty fields).

Please note that:

1. if an elevation value is exactly zero, a small, but not-zero, value must be used to obtain

correct computations4;

2. the loss elevations (i.e., grid nodes where the interpolation algorithm did not provided

results) must be characterized by abnormally high values, with a Surfer-like notation;

3. In the elevation matrix, each value outside the z range (if a Surfer .grd raster file is used)

or equal to NODATA_value (if an ESRI Raster file is used) is assumed to be a not-

modeled point, and no computations are performed by grid_strain3 in this point.

4 Each number strictly higher than the spacing of floating point numbers (eps) can be used to model a zero-elevation

point. To known eps, please type eps in the MCW. It is eps = 2^(-52)= 2.2204e-016.

 38

11. Strain computation in the 3D case and visualizations

The strain field is computed on the DTM nodes. A subsampling can be carried out if one or

both the DTM grid side are too large. Clearly, in order to properly use the information contained in a

displacement field, the strain field should be computed with a similar step. The subsampled points

are always elements of the original DTM, no interpolations are carried out. In particular, the options

"x2", "x4" and "x8" are available for the DTM sampling step along x and/or y.

Fig. 11.1. Some plots that can be generated by

grid_strain3. Top left panel: strain field. The

colors of the vectors shown their nature (blue:

extension; red: compression). Top right panel:

change-in-area contouring, that is the field of

strain traces (sums of eigenvalues). An inversion

of sign in this plot shows a significant change,

since the behavior passes form extensive

(compressive) to compressive (extensive).

Bottom panel: significance areas, on the basis of

the distribution of the experimental points.

The principal strain directions are now three in each point where the calculations are

performed. Flags are as in GridStrain, with the difference that a good distribution of the

experimental points in checked in 3D.

Regarding to the eventual exclusion of one or more points from the calculations, the following

facts should be taken in account:

a) All the experimental points outside the chosen DTM limits are automatically excluded.

b) Since in MATLAB environment no selection can be directly operated from a 3D view, the

eventual manual exclusion is actuated on a 2D projection of the scene. The user can choose the

projection (xy, xz, or yz).

 39

The final data are shown by means of 3D plots. In particular, the strain field is overlapped to a

wireframe representation of the DTM. In this way, if a subsampling has been chosen, only the

sampled model points are shown (Fig. 11.1). The change in volume, the maximum shear strain, the

errors on calculations, and the significance map are instead shown as contour maps on the DTM

surface. Regarding to the shear, the user can chose the representation: natural scale, logarithmic

scale (in this case, the logarithms of the absolute values are shown), or both. Also in 3D, the

representation of the strain can be limited to the high significance area only, or to the high and mid

significance areas. A sample data set and the corresponding DTM are available and attached to

grid_strain3 software. Fig. 11.1 shows some plots can are obtained using the sample data and DTM.

In the 3D case, the following output data are provided:

1. The strain field tensors, consisting of the principal strain directions (normalized eigenvectors)

and eigenvalues in each DTM point where the computations can effectively be performed. In

each computation point the ellipsoid’s semi-axes are plotted. Since such a plot is very memory

consuming, a menu box allows the choice of the plot of the strain tensors (the memory

consuming for all the other plots is low).

2. Change-in-volume, i.e. the trace of the strain tensor, presented as a contour plot rendered on

DTM surface.

3. Prevailing eigenvalue, i.e. the eigenvalue having the largest modulus, shown as a contour plot.

4. Flinn’s k-value, presented as a contour plot. This parameter encodes the shape of the strain

ellipsoid. Let be 𝑎 = (1 + 𝜀max)/(1 + 𝜀int), 𝑏 = (1 + 𝜀int)/(1 + 𝜀min), the Flinn’s k value is

defined by 𝑘 = (𝑎 − 1)/(𝑏 − 1). The cases 𝑘 < 1 and 𝑘 > 1 mean respectively flattening and

constriction, while 𝑘 = 1 is the case of a planar strain.

5. Shear normalized to the strain trace, shown as a contour plot.

6. Relative errors on strain estimates, presented as a contour plot.

7. Geometrical significance of the results, shown as a contour plot.

The ASCII files tutorial_data3.txt (experimental points), tutorial_dtm_in.grd

(initial DTM, i.e. DTM of a landslide before the displacement), tutorial_dtm_fin.grd (final

DTM, related to the same landslide after the displacement) are provided within the toolbox for

tutorial purposes.

 40

13. References

Livieratos E., 1980. Crustal strains using geodetic methods. Quaterniones Geodesiae, 3, 191-211.

Pesci A., Teza G., 2007. Strain rate analysis over the central Apennines from GPS velocities: the

development of a new free software. Bollettino di Geodesia e Scienze Affini, 56, 69-88.

Shen Z.-K., Jackson D.D., Ge B.X., 1996. Crustal deformation across and beyond the Los Angeles

basin from geodetic measurements, Journal of Geophysical Research, 101, 27957-27980.

Shen Z.-K., Jackson D.D., 2000. Optimal estimation of geodetic strain rates from GPS data, EOS

Transactions AGU, 81 (19), p. S406.

Teza G., Galgaro A., Zaltron, N., Genevois R., 2007. Terrestrial laser scanner to detect landslide

displacement fields: a new approach. International Journal of Remote Sensing, 28 (16), 3425-

3446.

Teza G., Pesci A., Galgaro A., 2008a. Grid_strain and grid_strain3: software packages for strain

field computation in 2D and 3D environment. Computers & Geosciences, 34 (9), 1142-1153.

Teza G., Pesci A., Genevois R., Galgaro A., 2008b. Characterization of landslide ground surface

kinematics from terrestrial laser scanning and strain field computation. Geomorphology, 97 (3-

4), 424-437.

Teza, G., Pesci, A., Meschis, M., 2022. A MATLAB toolbox for computation of velocity and strain

rate field from GNSS coordinate time series. Annals of Geophysics, submitted.

