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Determining the satellite orbit vector is necessary when constructing the geometric positioning 

model for a Synthetic Aperture Radar image from the Gaofen-3 satellite (GF-3), as it greatly 

impacts the geometric positioning accuracy. Therefore, it is vital to obtain accurate orbit vector 

data regarding the satellite imaging time. Here, GF-3’s orbit was interpolated using the Lagrange 

interpolation, Chebyshev polynomial, and ordinary polynomial methods, with each method’s 

influence on the substitution accuracy of the Rational Polynomial Coefficient (RPC) model being 

analyzed for GF-3’s various imaging modes. The results show that based on Lagrange 

interpolation orbit, the accuracy of RPC substitution is greatly affected by the length of the orbit, 

and the stability of RPC substitution accuracy is limited by the position of the interpolation orbit 

segment. In general, this method shows low RPC substitution accuracy and large fluctuations. 

The Chebyshev polynomial method and the ordinary polynomial method are less affected by the 

orbital length and can obtain high substitution accuracy. The RPC substitution accuracy of the 

two methods was higher than 0.08 % and 0.02 %, respectively. In addition, the results of RPC 

substitution accuracy are more stable and reliable when ordinary polynomial interpolation orbit 

is used.  
 

1. Introduction 

Launched in August 2016, the Gaofen-3 (GF-3) satellite has the most imaging modes of all 

Synthetic Aperture Radar (SAR) satellites. In detail, it possesses 12 imaging modes, such as 

traditional strip, scanning, and wave imaging modes, with an image resolution of 1–500 m and a 

width range of 10–650 km(1-3). GF-3 is the first C-band multi-polarization SAR satellite with a 

resolution of 1 m from China4; it can continuously monitor and survey global marine and land 

resources in all-day and all-weather conditions, and provides strong suppor t for applications such 

as marine environment monitoring, marine target surveillance, sea area use management, marine 
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rights maintenance, and disaster prevention and mitigation. It can effectively change the status 

quo of relying on imported high-resolution SAR images in China, which is of great significance 

to maritime development and the success of the “One Belt, One Road” initiative(4-6). 

With the rapid development of spaceborne SAR technology, SAR image positioning 

technology has increased in maturity. To date, several geometric models for spaceborne SAR 

positioning have been developed, with the main two being the Range-Doppler (RD) (7) and 

Rational Polynomial Coefficient (RPC) models(8). The RD model is a geometric imaging model 

with a strict physical meaning; it consists of the slant range, Doppler, and ellipsoidal equations. 

This set of equations is constructed depending on the parameters of the sensor, and this model has 

a high threshold for use(9,10). The RPC model, meanwhile, is a geometric imaging model with 

mathematical significance; it has strong versatility, and so could be used as a substitute for the 

RD model. As such, this model has been studied extensively, both in China and internationally. 

Toutin summarized the RD and RPC models in detail, revealing them to be the leading geometric 

imaging models(11), while Tao et al. studied the forms of the positive and negative mathematics 

of the RPC model in depth and analyzed the influence of the control point distribution on its fitting 

accuracy(12,13). Zhang et al., meanwhile, verified the feasibility and effectiveness of substituting 

the RD model with the RPC model, based on SAR image product data(14,15). Hou et al. analyzed 

the factors influencing the fitting accuracy of the RPC model based on GF-3’s image products, 

mainly including the grid size, elevation layers, and fitting order(16). The orbit data represent an 

important element when constructing spaceborne SAR tight geometric positioning models, so 

their accuracy can significantly influence the substitution accuracy of the RPC model. At present, 

however, the orbit lengths available for interpolation differ across GF-3’s diverse imaging modes. 

Moreover, to date the effect of using different orbit interpolation methods has not been 

investigated regarding the substitution accuracy of the RPC model for GF-3 images. 

The commonly used interpolation methods for satellite orbits are Lagrange interpolation, the 

Chebyshev polynomial method, and the ordinary polynomial method(17,18). These methods are 

based on the position and velocity of a given satellite, and corresponding mathematical models 

are constructed for interpolation to obtain said satellite’s orbit state corresponding to the imaging 

time of each image line. There are large differences in imaging time between each of GF-3’s 

imaging modes (Table 1), with longer imaging times resulting in a greater degree of orbit bending. 

Thus, it is important to investigate the mathematical modeling of the orbital parameters of GF-3 

using different interpolation methods, and to analyze the influence of each interpolation method 

on the RPC model’s substitution accuracy under different imaging modes. 

Table 1 GF-3 imaging mode. 

Imaging mode 
Resolution 

(m) 
Image ID Imaging time (s) 

Ultra-Fine-Strip 3 
HZ_1202 5.5 

HW_3468 5.0 

Fine-Strip-Ⅰ 5 
BF_5833 9.0 

SP_2388 9.0 

Quad-Polarized-Strip-I 8 
SP_2272 5.1 

BF_9197 6.0 

This study analyzed the establishment of the RPC positioning model and the parameter solving 

process. Furthermore, based on the RPC model substitution accuracies of different GF-3 product 
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images, the effects of three orbit interpolation algorithms (Lagrange interpolation, the Chebyshev 

polynomial method, and the ordinary polynomial method) were analyzed and verified.  

2. Methods 

2.1 RPC model 

The RPC model correlates the relationship between the coordinates of ground target points and 

the coordinates of points on corresponding images using a ratio polynomial; it is defined as shown 

in Equation (1) (19): 
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where , , )LN P L H（ , ( , , )LD P L H , ( , , )SN P L H , and ( , , )SD P L H  are third-order 

polynomials, with each polynomial having 20 coefficients; the constant parameter of the 

general denominator was set here to 1, leading to the RPC model having 78 parameters 

in total. Furthermore, ( , )X Y  denotes the regularized image space coordinates, while

( , , )P L H  represents the regularized ground space coordinates. The regularization 

formula is shown in Equations (2), (3): 
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where offS , scaleS , offL , and scaleL  are the normalized parameters of the coordinates of the 

corresponding points on the image, while latD , _lat offD , _lat scaleD , lonD , _lon offD , _lon scaleD , hD , 

_h offD , and _h scaleD  are the normalized parameters of the coordinates of the ground target points. 

Many studies have shown that the RPC model exhibits the highest replacement accuracy when 

used with third order and unequal denominators. The following experiments were therefore 
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conducted based on this model; the grid size was set to 200 × 200 and the number of elevation 

layers was 15(16,20). 

2.2 Orbit interpolation method 

In the azimuthal direction, each line of the GF-3 image corresponds to the position and velocity 

of a satellite and is a function of time (t). It can be interpolated by Lagrange interpolation(21), the 

Chebyshev polynomial method(22), or the ordinary polynomial method to obtain the orbit vector 

and the function of t. 

2.2.1 Lagrange interpolation method 

The Lagrange interpolation method is widely used due to its simplicity and computation speed. 

The Lagrange interpolation function is defined as shown in Equation (4)(23): 
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where ( )jl x  is the Lagrange interpolation basis function, the expression of which is given by 

Equation (5): 
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and satisfies: 
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Assuming a k-order interpolation, there are k + 1 known points, and interpolation can be carried 

out at any position between these k + 1 points. Thus, the position coordinates and velocity of GF-

3 can be calculated as shown in Equation (7) using the WGS-84 coordinate system: 
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2.2.2 Chebyshev polynomial method 

The Chebyshev polynomial method, which generates interpolated polynomial coefficients 

based on known nodes and relies on least-squares approximation, has important applications 

regarding approximation theory. When computing the Chebyshev polynomial coefficients of 

order k for a time interval of  0 0, tt t t d = +  (where 0t  = initial time and td  = interpolation 

time length), the Chebyshev polynomial can be defined as shown in Equation (8) (24): 
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where  1,1  −  is transformed from the time interval, k denotes the order, iC is the 

Chebyshev polynomial coefficient, and iT  is the Chebyshev polynomial. iT  can be obtained 

recursively, as shown in Equation (9): 
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Thus, the coordinates of a satellite in the WGS-84 coordinate system, as well as its velocity, 

can be interpolated using the Chebyshev polynomial function, as shown in Equation (10): 
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If the error equation is = −V BC F , then, taking the x coordinate as an example(25): 
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2.2.3 Ordinary polynomial method 

The Nth order ordinary polynomial is expressed as shown in Equation (13)(18): 

 
1
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where 1 1, , na a a
 is a polynomial coefficient, 

( )P x
 represents a satellite’s coordinates 

( , , )x y z
and velocity 

( , , )v v vx y z
at the point target imaging time x , and x  is the time interval 

from the moment in question to the starting point of the interpolation period. 

Therefore, when calculating the position of a given satellite at any moment, the time function 

of its coordinates and velocity can be constructed from the expression of the ordinary polynomial, 

as shown in Equation (14): 
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3. Experimental Method 

3.1  Experimental data 

In this study, GF-3 SAR images were used as experimental data. To compare the effects of 

different orbit interpolation methods on the RPC model’s substitution accuracy under different 

imaging modes, the Ultra-Fine-Strip (UFS), Fine-Strip-I (FSI), and Quad-Polarized-Strip-I (QPSI) 

image modes were analyzed; these modes cover the Zhengzhou (Henan), Pudong (Shanghai), 

Fangshan (Beijing), and Wenchang (Hainan) areas, which were selected for testing. More detailed 

information about these three test modes is listed in Table 2. 

Table 2 Test image parameters. 

Imaging 

Mode 
Image ID Region 

Orbit & Side 

View 

Angle of 

Incidenc

e (°) 

Imaging 

Start Time 

Imaging End 

Time 

Imaging 

Time (s) 

Number of GPS 

Track Vectors 

Recorded in 

Imaging 

Information 

Parameter File 

(unit) 

Ultra-

Fine-Strip 

HZ_1202 Henan DEC&R 33.5 
2019/10/2

1 22:30:56 

2019/10/21 

22:31:01 
5.5 361 

HW_3468 Hainan ASC & R 28.4 
2020/4/21 

10:44:19 

2020/4/21 

10:44:24 
5.0 301 

Fine-

Strip-I 

BF_5833 Beijing ASC & R 30.7 
2017/10/1

9 10:09:52 

2017/10/19 

10:10:01 
9.0 234 

SP_2388 
Shangha

i ASC & R 20.2 
2019/12/2

6 9:48:48 

2019/12/26 

9:48:57 
9.0 361 

Quad-

Polarized-

Strip-I 

BF_9197 Beijing ASC & R 18.9 
2017/1/22 

21:51:22 

2017/1/22 

21:51:27 
5.0 241 

SP_2272 
Shangha

i DEC&R 31.7 
2017/05/3

0 21:55:07 

2017/05/30 

21:55:13 
5.1 212 

GPS: Global Positioning System; ASC: Ascending Orbit; DEC: Descending Orbit; R: Right Side View 

3.2  Experimental program 
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An experiment was designed to compare and verify the effects of the three interpolation 

methods on the RPC model’s substitution accuracy when using GF-3’s different imaging modes. 

The experiment was based on different lengths of track segments from a single image for each 

mode. GF-3’s satellite image imaging information parameter file records a satellite position vector 

every 1 s, so the track segments were divided into track lengths composed of the GPS orbit vector 

recorded by the imaging information parameter file (hereinafter referred to as track 1) and the 

length of the track at the imaging moment of a single SAR standard view image (hereinafter 

referred to as track 2; Fig. 1). 

 
Fig. 1 Imaging trajectory diagram of a GF-3 SAR image. 

The experiment was set on the basis of the length of track 2. The number of track vectors was 

then gradually increased, that is, the time difference of Coordinated Universal Time (UTC) 

corresponding to the positions of the interpolation start and end nodes was increased accordingly 

to characterize the acquisition of different orbit lengths. The UFS, FSI, and QPSI modes are 10 s 

apart. Based on the above experimental design, the orbit vectors of the different imaging mode 

images were interpolated with each of the three abovementioned interpolation methods to obtain 

the satellite vectors at arbitrary positions. Then, the RD model was fitted with the RPC model, 

with the Root Mean Square Error (RMSE) being used as an evaluation index to evaluate the 

substitution accuracy obtained by the RPC model under the three methods. 

4. Experimental results and analysis 

4.1 Effect of Lagrange interpolation-based method on RPC model substitution accuracy 

for different imaging modes 

Figure 2 shows the fitting results for each of the three test pattern images; the statistical RPC 

substitution accuracy results are shown in Table 3. 
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Fig. 2 Rational Polynomial Coefficient substitution accuracy based on Lagrange interpolation: 

 (a) Ultra-Fine-Strip mode image, (b) Fine-Strip-I mode image, and (c) Quad-Polarized-Strip-I mode image. 

Figure 2 (a) shows that the RPC substitution error of the UFS mode image was proportional to 

the UTC time difference corresponding to the interpolation starting and ending nodes. As the 

length of the UTC time difference between the two images of the UFS mode in the figure is 

limited, using more track vectors for interpolation would have made it easier to approach the end 

point of Track 1. Lagrange interpolation is prone to Runge’s phenomenon at the end point, so it 

is reasonable that the error of this test result increased approaching the end point. Figure 2 (b, c) 

shows that the RPC substitution errors of each scene image decreased with increasing UTC time 

difference corresponding to the interpolation start and end nodes. This trend occurred because the 

arc of the track segment corresponding to the starting and ending nodes of the interpolation is 

large. The larger the time difference is, the longer the track length formed by the track vector. 

Therefore, the RPC substitution accuracy is better after Lagrange interpolation. This indicates that 

when using Lagrange interpolation, it is difficult to avoid Runge’s phenomenon due to the 

irregular position of the interpolation point. Therefore, the RPC substitution accuracy after 

interpolation was neither good nor bad, indicating that using this method for interpolation results 

in an unreliable RPC substitution accuracy. 

Table 3 Substitution accuracy analysis of Rational Polynomial Coefficient model based on Lagrange 

interpolation. 

Imaging Mode Imaging ID 

RMSE (pixel) 

Range Direction 
Azimuth 

Direction 

Ultra-Fine-Strip 
HZ_1202 0.03606  0.03671 

HW_3468 0.05653 0.07562 

Fine-Strip-I 
BF_5833 0.12945 0.10659 

SP_2388 0.15042 0.19535 

Quad-Polarized-Strip-I 
BF_9197 0.11449 0.03473 

SP_2272 0.02901 0.01262 

Table 3 shows that the imaging time of the FSI mode image is the longest, and the length of 

the corresponding track 2 is the longest. Its RPC has the worst substitution accuracy in the range 

and azimuth directions, and the worst substitution accuracy is 15.042% and 19.535% pixels. Even 
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though the RPC substitution accuracy of UFS and QPSI images is relatively good, it is only within 

9% pixels, meaning that it will be difficult for it to meet the needs of GF-3 applications. 

4.2 Effect of Chebyshev polynomial-based method on RPC model substitution accuracy 

for different imaging modes 

Figure 3 shows the error statistics for the RPC model’s substitution accuracy regarding the 

three experimental model images (Table 4). 

 
Fig. 3 Rational Polynomial Coefficient substitution accuracy based on Chebyshev polynomial: 

(a) Ultra-Fine-Strip mode image, (b) Fine-Strip-I mode image, and (c) Quad-Polarized-Strip-I mode image. 

In theory, for Chebyshev polynomial interpolation, using more points for interpolation should 

help to improve the accuracy of polynomial interpolation. Figure 3 shows that the larger the UTC 

time difference corresponding to the interpolation start and end nodes (i.e., the longer the track 

length composed of the track vector), the smaller the RPC substitution error was for each mode’s 

image. This indicates that using longer track segments for interpolation delivered a better RPC 

substitution accuracy when using the Chebyshev polynomial interpolation track. 

Table 4 Substitution accuracy analysis of Rational Polynomial Coefficient model based on Chebyshev 

polynomial method. 

Imaging Mode Imaging ID 

RMSE (pixel) 

Range Direction 
Azimuth 

Direction 

Ultra-Fine-Strip 
HZ_1202 0.000017 0.000136 

HW_3468 0.00002 0.00013 

Fine-Strip-I 
BF_5833 0.00009 0.00004 

SP_2388 0.00078 0.00007 

Quad-Polarized-Strip-I 
BF_9197 0.00015 0.00002 

SP_2272 0.00001 0.00002 

Table 4 shows that the RPC replacement accuracy of the above image products was within 

0.08% pixels for the range and azimuth directions when using the Chebyshev polynomial 

interpolation orbit; this would meet GF-3’s operational requirements. Compared with Table 3, the 

substitution accuracy of RPC was significantly improved. Considering that Chebyshev 

polynomial interpolation can more effectively avoid Runge’s phenomenon, the substitution 
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accuracy of the RPC was more accurate after interpolation by this method, indicating that the test 

results were reasonable. 

4.3 Effect of ordinary polynomial-based method on RPC model substitution accuracy for 

different imaging modes 

Figure 4 shows the distribution of RPC substitution errors based on ordinary polynomial 

interpolation for tests conducted with three test pattern images; the RPC model substitution 

accuracy is shown in Table 5. 

 
Fig. 4 Rational Polynomial Coefficient substitution accuracy error based on ordinary polynomial: 

(a) Ultra-Fine-Strip mode image, (b) Fine-Strip-I mode image, and (c) Quad-Polarized-Strip-I mode image. 

The accuracy of ordinary polynomial interpolation is affected by the number of interpolation 

points; using more interpolation nodes results in an improved accuracy. Figure 4 shows that, for 

all three images, as the number of nodes used for interpolation increased with increasing track 

length (and correspondingly increasing UTC duration), the substitution accuracy of the RPC 

model gradually decreased, before stabilizing when using the ordinary polynomial interpolation 

track. 

Table 5 Substitution accuracy analysis of Rational Polynomial Coefficient model based on ordinary 

polynomial method. 

Imaging Mode Imaging ID 

RMSE (pixel) 

Range Direction 
Azimuth 

Direction 

Ultra-Fine-Strip 
HZ_1202 0.00002 0.00014 

HW_3468 0.00004 0.00013 

Fine-Strip-I 
BF_5833 0.00012 0.00004 

SP_2388 0.00002 0.00007 

Quad-Polarized-Strip-I 
BF_9197 0.00019 0.00002 

SP_2272 0.00001 0.00002 

The results in Table 5 show that the RPC model obtained good substitution accuracy when 

using the ordinary polynomial method interpolated orbit, and that the substitution accuracy 

reached within 0.02% pixels for each mode’s image under different orbit lengths. This indicates 
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that the ordinary polynomial method interpolation orbit can obtain more accurate orbit data than 

Lagrange interpolation, and that the RPC model’s substitution accuracy was reliable. 

5. Conclusions 

This study investigated the influence of using different orbit interpolation methods on the 

replacement accuracy of the RPC model for several of GF-3’s image modes. This was 

experimentally investigated using the imaging information file data of GF-3’s SAR images. The 

specific conclusions are as follows: 

1. The replacement accuracy of the RPC model was found to be related to the orbit 

interpolation method. Among them, the Lagrange interpolation method effect < Chebyshev 

polynomial interpolation effect < polynomial interpolation effect. When the polynomial 

interpolation method is used, the substitute accuracy of RPC is <0.02% pixels. 

2. For the GF-3 satellite images, the results obtained by the Lagrange interpolation method 

are greatly affected by the interpolation orbit length. The imaging time of the FSI mode is longer 

than that of the other two modes, and the substitution accuracy of RPC in the FSI mode is one 

order of magnitude lower than that of the other two modes. The results of Chebyshev polynomial 

interpolation and ordinary polynomial interpolation are less affected by the length of the 

interpolation orbit, and the RPC substitution accuracy of the two methods is better than 0.08 % 

and 0.02 %, respectively. In addition, polynomial interpolation is more stable than Chebyshev 

polynomial interpolation. 

The results presented here show using the ordinary polynomial method to interpolate the orbit 

delivered more accurate, stable, and reliable results than those of the other two methods. This 

study’s findings could provide reference values for subsequent experimental positioning 

calibration studies. They could also aid other experimental studies into the selection of geometric 

imaging positioning models under different scenarios. 
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