Solar activity relations in energetic electron events measured by the MESSENGER mission

Credit: https://ismaelcaracol.wordpress.com/
Pictures and screenshots are welcome

Link to the article

Rodríguez-García et al. (A\&A, forthcoming article)
L. Rodríguez-García, L. A. Balmaceda, R. Gómez-Herrero, A. Kouloumvakos, N. Dresing, D. Lario, I. Zouganelis, A. Fedeli, F. Espinosa Lara, I. Cernuda, G. C. Ho,
R. F. Wimmer-Schweingruber, and J. Rodríguez-Pacheco
https://doi.org/10.1051/0004-6361/202245604

Laura Rodríguez-García
Postdoctoral researcher at Universidad de Alcalá (Madrid, Spain)
Solar Orbiter EPD instrument team member SERPENTINE project member

Motivation

Third science objective of Solar Orbiter:
How do solar eruptions produce energetic particle radiation that fills the heliosphere?

To investigate the acceleration of solar energetic particles sampling events closer to the acceleration site

Outline

\checkmark MESSENGER mission: electron events measured close to the acceleration site (near 0.4 au)
\checkmark Relations between solar energetic electron peak intensities and solar source parameters
\checkmark Conclusions

MESSENGER solar energetic electron observations

- Most of the rising, maximum, and early decay phase of solar cycle 24
- Heliocentric distance of MESSENGER: 0.31 to 0.47 au
- Solar energetic events observed as vertical spikes in this compressed timescale
- High background of MESSENGER/EPS instrument -> only strong events
- Anti-Sun pointing of MESSENGER-> lower limit of peak electron intensities

MESSENGER list

In 61 solar energetic electron (SEE) events we find that:

- 57 events are CME related, 56 of them accompanied by a CMEdriven shock
- At least 44 events are widespread
- 37 events accompanied by relativistic electron enhancements

\#	Date	Solar eventI-IIIonset(UT $\pm 5 \mathrm{~min})$	$\begin{gathered} \text { Flare } \\ \operatorname{loc} \text { [class] } \\ (\text { deg }) \end{gathered}$	CA (deg)	R MESS (au)	SEE event		5
						$\begin{aligned} & \text { Tmax MESS (bg) } \\ & 71 \text { to } 112 \mathrm{keVe}) \\ & \left(\mathrm{cm}^{2} \mathrm{srs} \mathrm{a} \mathrm{MeV}^{-1}\right. \end{aligned}$	MESS $(-)$	
(1)	(2)	(3)	(4)	(8)	(9)	(10)	(II)	
${ }^{* 1}$	2010/08/14	10:00 ${ }^{\text {² }}$	N17W052 [C4.4]	-67	0.31	$2.5 \times 10^{4}\left(1.6 \times 10^{4}\right)$,	
*2	2010/08/18	05:35	N17W101 [C4.5]	-39	0.31	$3.7 \times 10^{4}\left(1.5 \times 10^{4}\right)$	-	
*3	2011/03/07	19:55	N30W048 [M3.7]	168	0.34	$7.5 \times 10^{4}\left(1.6 \times 10^{4}\right)$	$-1.78 \pm 0.13^{\dagger}$	
* 4	2011/06/04	06:50	N16W 144 [-]	-12	0.33	$3.1 \times 10^{4}\left(9.0 \times 10^{3}\right)$	-2.26 ± 1.14	
*5	2011/06/04	21:50	N16W 153 [-]	-5	0.33	$4.9 \times 10^{7}\left(2.0 \times 10^{4}\right)$	$-1.94 \pm 0.21^{\dagger}$	
*6	2011/08/02	06:25^	N15W015 [M1.4]	19	0.46	$1.5 \times 10^{3}\left(2.5 \times 10^{2}\right)$	-	
*7	2011/08/04	03:50	N19W036 [M9.3]	37	0.46	$1.6 \times 10^{3}\left(5.0 \times 10^{2}\right)$	-	
*8	2011/09/22	10:40	N09E089 [X1.4]	90	0.36	$8.1 \times 10^{4}\left(1.4 \times 10^{4}\right)$	$-1.97 \pm 0.36^{\dagger}$	
*9	2011/10/04	12:30	N26E153 [-]	-14	0.42	$2.9 \times 10^{5}\left(1.0 \times 10^{4}\right)$	$-1.88 \pm 0.17^{\dagger}$	
10	2011/10/14	11:00 ${ }^{\text {a }}$	N10E140 [-]	-23	0.47	$2.3 \times 10^{4}\left(1.2 \times 10^{4}\right)$	-	
*11	2011/11/03	22:15	N09E154 [-]	-74	0.44	$1.4 \times 10^{5}\left(9.0 \times 10^{3}\right)$	$-1.69 \pm 0.10^{\dagger}$	
12	2011/11/09	13:10	N24E035 [M1.1]	34	0.42	$3.6 \times 10^{4}\left(1.0 \times 10^{4}\right)$	$-1.96 \pm 0.28^{\dagger}$	
*13	2011/11/17	20:15	N18E120 [-]	-71	0.38	$5.8 \times 10^{4}\left(7.1 \times 10^{3}\right)$	$-1.94 \pm 0.26^{\dagger}$	
${ }^{*} 14$	2012/01/02	14:30	N08W104 [C2.4]	-34	0.43	$2.1 \times 10^{4}\left(8.1 \times 10^{3}\right)$	-	
*15	2012/01/23	03:40	N28W021 [M8.7]	-157	0.46	$3.4 \times 10^{4}\left(8.7 \times 10^{3}\right)$	$-1.78 \pm 0.36^{\dagger}$	
*16	2012/01/27	18:15	N27W078 [X1.7]	-108	0.46	$8.7 \times 10^{4}\left(8.5 \times 10^{3}\right)$	$-1.70 \pm 0.19^{+}$	
*17	2012/03/04	11:05	N19E061 [M2.0]	-8	0.31	$8.4 \times 10^{4}\left(8.9 \times 10^{3}\right)$	$-2.41 \pm 1.29^{\dagger}$	
*18	2012/03/05	03:35	N17E052 [X1.1]	-2	0.31	$1.5 \times 10^{6}\left(4.1 \times 10^{4}\right)$	$-1.98 \pm 0.20^{\dagger}$	
*19	2012/03/07	00:20	N17E027 [X5.4]	13	0.31	$2.2 \times 10^{7}\left(1.9 \times 10^{4}\right)$	$-2.02 \pm 0.26^{\dagger}$	
*20	2012/05/17	01:30	N11W076 [M5.1]	-76	0.35	$8.7 \times 10^{4}\left(2.0 \times 10^{4}\right)$	-	
*21	2012/05/26	20:40	N15W116 [-]	-75	0.31	$1.9 \times 10^{4}\left(4.0 \times 10^{3}\right)$	-1.70 ± 0.53	
*22	2012/05/27	05:10 ${ }^{\text {¢ }}$	SloE054 [C3.1]	108	0.31	$1.3 \times 10^{5}\left(2.4 \times 10^{4}\right)$	$-2.56 \pm 0.96^{\dagger}$	
*23	2012/07/12	15:45 ${ }^{\text {²}}$	S15W001 [X1.4]	4	0.46	$1.1 \times 10^{6}\left(5.5 \times 10^{3}\right)$	$-1.95 \pm 0.27^{\dagger}$	
24	2012/07/17	14:00 ${ }^{\text {¢ }}$	S20W065 [C9.9]	59	0.46	$1.6 \times 10^{4}\left(2.8 \times 10^{3}\right)$	-	
25	2012/07/19	05:20	S13W088 [M7.7]	79	0.46	$2.6 \times 10^{4}\left(7.1 \times 10^{3}\right)$	${ }^{-}$	
*26	2012/07/23	02:10 ${ }^{\text {¢ }}$	S17W132 [-]	116	0.45	$5.8 \times 10^{4}\left(9.5 \times 10^{3}\right)$	$-1.90 \pm 0.18^{\dagger}$	
27	2012/07/28	21:05	S25E055 [M6.1]	-82	0.44	$5.4 \times 10^{4}\left(4.7 \times 10^{3}\right)$	$-2.11 \pm 0.42^{\dagger}$	
*28	2012/09/20	14:55	S15E155 [-]	-29	0.42	$2.0 \times 10^{6}\left(2.5 \times 10^{4}\right)$	$-1.91 \pm 0.21^{\dagger}$	
*29	2012/10/14	00:35	N13E137 [-]	-58	0.46	$1.9 \times 10^{5}\left(4.0 \times 10^{3}\right)$	$-1.93 \pm 0.15{ }^{\dagger}$	
30	2013/03/16	05:45	S15W045 [C2.8]	-14	0.43	$2.7 \times 10^{5}\left(5.0 \times 10^{4}\right)$	$-1.92 \pm 0.45^{\dagger}$	
*31	2013/04/11	07:00	N09E012 [M6.5]	-122	0.46	$2.2 \times 10^{4}\left(2.7 \times 10^{3}\right)$	-	
32	2013/04/24	21:40	N10W175 [-]	38	0.40	$3.3 \times 10^{6}\left(7.6 \times 10^{3}\right)$	$-2.22 \pm 0.16^{\dagger}$	
*33	2013/05/13	15:55	N11E085 [X2.8]	67	0.31	$2.4 \times 10^{4}\left(6.3 \times 10^{3}\right)$	-1.80 ± 0.59	
*34	2013/06/21	02:50	S16E073 [M2.9]	-67	0.46	$5.5 \times 10^{5}\left(4.7 \times 10^{3}\right)$	$-1.82 \pm 0.30^{\dagger}$	
35	2013/08/19	01:20 ${ }^{\text {¢ }}$	N10W 162 [-]	-13	0.32	$4.0 \times 10^{4}\left(1.5 \times 10^{4}\right)$	-	
*36	2013/08/19	22:30	N08W178 [M3.3 ${ }^{\text {² }}$]	-1	0.32	$2.9 \times 10^{7}\left(1.0 \times 10^{4}\right)$	$-1.99 \pm 0.25^{\dagger}$	
*37	2013/10/11	07:10	N21E103 [M1.5]	-56	0.43	$1.4 \times 10^{5}\left(4.6 \times 10^{3}\right)$	$-1.92 \pm 0.08^{+}$	
*38	2013/10/25	08:00	S10E073 [X1.7]	-62	0.36	$2.2 \times 10^{5}\left(1.3 \times 10^{4}\right)$	$-1.85 \pm 0.16^{\dagger}$	
*39	2013/10/25	15:00	S06E069 [X2.1]	-59	0.36	$2.8 \times 10^{5}\left(5.4 \times 10^{4}\right)$	$-1.89 \pm 0.18^{\dagger}$	
*40	2013/10/28	15:10	S08E028 [M4.4]	-29	0.34	$8.1 \times 10^{5}\left(2.1 \times 10^{4}\right)$	$-1.97 \pm 0.06^{+}$	
*41	2013/11/19	10:25	S15W069 [X 1.0$]$	-41	0.34	$6.2 \times 10^{4}\left(5.4 \times 10^{4}\right)$	$-1.93 \pm 0.31^{\dagger}$	
*42	2013/11/30	05:10 ${ }^{\text {¢ }}$	N13W150[-]	2	0.40	$1.5 \times 10^{4}\left(4.9 \times 10^{3}\right)$	-	
*43	2013/11/30	15:00 ${ }^{\text {¢ }}$	S15E146 [-]	65	0.40	$1.6 \times 10^{4}\left(8.2 \times 10^{3}\right)$	-	
*44	2013/12/26	03:05	S09E166 [-]	-9	0.46	$1.1 \times 10^{6}\left(4.2 \times 10^{3}\right)$	$-2.02 \pm 0.38^{\dagger}$	
*45	2014/01/07	18:05	S15W011 [X1.2]	145	0.43	$3.2 \times 10^{4}\left(6.1 \times 10^{3}\right)$	-	
*46	2014/01/28	00:30 ${ }^{\text {¢ }}$	Sl0E081 [C7.6]	-8	0.32	$5.9 \times 10^{3}\left(8.1 \times 10^{2}\right)$	-	
47	2014/01/28	05:25	S14E088 [C9.3]	-16	0.32	$2.2 \times 10^{4}\left(2.7 \times 10^{3}\right)$	$-2.02 \pm 1.02^{\dagger}$	
48	2014/01/30	16:05	S13E058 [M6.6]	2	0.31	$7.4 \times 10^{4}\left(7.1 \times 10^{3}\right)$	$-1.82 \pm 0.33^{\dagger}$	
49	2014/02/20	07:50	S15W073 [M3.0]	34	0.37	$1.3 \times 10^{4}\left(1.5 \times 10^{3}\right)$	-	
*50	2014/02/25	00:45	S12E082 [X4.9]	-137	0.40	$5.5 \times 10^{4}\left(1.2 \times 10^{3}\right)$	$-1.91 \pm 0.47^{\dagger}$	
*51	2014/03/13	21:40 ${ }^{\text {¢ }}$	N15W $140[-]$	44	0.46	$2.3 \times 10^{4}\left(3.8 \times 10^{3}\right)$	-1.55 ± 0.31	
52	2014/08/08	16:15	S10W 160 [-]	-41	0.33	$7.3 \times 10^{4}\left(6.2 \times 10^{3}\right)$	$-1.82 \pm 0.21^{\dagger}$	
*53	2014/09/01	11:00	N14E127 [-]	-44	0.45	$2.9 \times 10^{7}\left(3.4 \times 10^{3}\right)$	$-1.81 \pm 0.03^{\dagger}$	
54	2014/09/05	06:50	S14E069 [C6.8]	6	0.46	$8.6 \times 10^{4}\left(3.9 \times 10^{4}\right)$	-2.06 ± 0.65	
55	2014/09/08	23:55	N12E029 [M4.5]	39	0.47	$2.6 \times 10^{4}\left(5.4 \times 10^{3}\right)$	-	
*56	2014/09/10	17:30	N14E002 [X1.6]	64	0.47	$5.6 \times 10^{4}\left(1.0 \times 10^{4}\right)$	$-1.77 \pm 0.16^{\dagger}$	
*57	2014/09/24	20:45	N13E179 [-]	-139	0.44	$5.3 \times 10^{4}\left(4.7 \times 10^{3}\right)$	$-2.19 \pm 0.13^{\dagger}$	
58	2014/12/13	14:05	S20W 143 [-]	-75	0.46	$7.8 \times 10^{6}\left(3.4 \times 10^{3}\right)$	$-1.92 \pm 0.26^{\dagger}$	
59	2015/02/21	09:30 ${ }^{\text {¢ }}$	S40W075 [B4.8]	-19	0.44	$3.8 \times 10^{4}\left(3.9 \times 10^{3}\right)$	-	
60	2015/03/24	08:30 ${ }^{\text {¢ }}$	S01W121 [-]	-31	0.43	$1.2 \times 10^{6}\left(1.3 \times 10^{4}\right)$	$-1.94 \pm 0.24^{\dagger}$	
*61	2015/04/14	09:15^	S15W 100 [B9]	-119	0.32	$1.5 \times 10^{4}\left(4.5 \times 10^{3}\right)$	-	

To relate in situ electron enhancements with solar activity

Example: Solar energetic electron event on 2011 June 4

Example：Solar energetic electron event on 2011 September 22

Table A.1. Solar energetic electron events measured by MESSENGER.

MESSENGER list
 completed with the 3D reconstruction of CMEs and CME-driven shocks

\#	Date	Solar eventI-IIIonset$(\mathrm{UT} \pm 5 \mathrm{~min})$	$\begin{gathered} \text { Flare } \\ \text { loc [class] } \\ \text { (deg) } \end{gathered}$	$\begin{aligned} & \hline \hline \text { CME parameters } \\ & \text { speed } \\ & (\text { GCS }) \end{aligned}$		$\begin{gathered} \hline \hline \text { Shock } \\ \text { speed } \\ (3 \mathrm{D}) \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { CA } \\ & \text { MESS } \\ & \text { (deg) } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \text { MESS } \\ (\mathrm{au}) \\ \hline \end{gathered}$	SEE event		
						$\begin{aligned} & \text { Imax_MESS (bg) } \\ & 71 \text { to } 112 \mathrm{keV} \text { e } \end{aligned}$			MESS		
				$\left(\mathrm{km} \mathrm{s}^{-1}\right)$	(deg)				$\left(\mathrm{cm}^{2} \mathrm{srs} \mathrm{MeV}^{-1}\right.$	$(-)$	
(1)	(2)			(5)	(6)		(7)	(8)	(9)	(10)	(II)
*1	2010/08/14	10:00 ${ }^{\text {² }}$	N17W052 [C4.4]	960	64	1631	-67	0.31	$2.5 \times 10^{4}\left(1.6 \times 10^{4}\right)$		
*2	2010/08/18	05:35	N17W101 [C4.5]	1634	57	1781	-39	0.31	$3.7 \times 10^{4}\left(1.5 \times 10^{4}\right)$	-	
*3	2011/03/07	19:55	N30W048 [M3.7]	2250	51	2505	168	0.34	$7.5 \times 10^{4}\left(1.6 \times 10^{4}\right)$	$-1.78 \pm 0.13^{\dagger}$	
*4	2011/06/04	06:50	N16W 144 [-]	1086	106	1826	-12	0.33	$3.1 \times 10^{4}\left(9.0 \times 10^{3}\right)$	-2.26 ± 1.14	
*5	2011/06/04	21:50 ${ }^{\text {¢ }}$	N16W 153 [-]	2200	126	3397	-5	0.33	$4.9 \times 10^{7}\left(2.0 \times 10^{4}\right)$	$-1.94 \pm 0.21^{\dagger}$	
*6	2011/08/02	06:25^	N15W015 [M1.4]	807	90	1114	19	0.46	$1.5 \times 10^{3}\left(2.5 \times 10^{2}\right)$		
*7	2011/08/04	03:50	N19W036 [M9.3]	1125	88	2572	37	0.46	$1.6 \times 10^{3}\left(5.0 \times 10^{2}\right)$	-	
*8	2011/09/22	10:40	N09E089 [X1.4]	1300	81	2206	90	0.36	$8.1 \times 10^{4}\left(1.4 \times 10^{4}\right)$	$-1.97 \pm 0.36^{+}$	
*9	2011/10/04	12:30 ${ }^{\text {c }}$	N26E153 [-]	1358	77	1341	-14	0.42	$2.9 \times 10^{5}\left(1.0 \times 10^{4}\right)$	$-1.88 \pm 0.17^{\dagger}$	
10	2011/10/14	11:00 ${ }^{\text {a }}$	N10E140 [-]	889	74	1166	-23	0.47	$2.3 \times 10^{4}\left(1.2 \times 10^{4}\right)$	-	
*11	2011/11/03	22:15	N09E154 [-]	890	76	1210	-74	0.44	$1.4 \times 10^{5}\left(9.0 \times 10^{3}\right)$	$-1.69 \pm 0.10^{\dagger}$	
12	2011/11/09	13:10	N24E035 [M1.1]	1133	45	1446	34	0.42	$3.6 \times 10^{4}\left(1.0 \times 10^{4}\right)$	$-1.96 \pm 0.28^{\dagger}$	
*13	2011/11/17	20:15 ${ }^{\text {¢ }}$	N18E120 [-]	948	106	1254	-71	0.38	$5.8 \times 10^{4}\left(7.1 \times 10^{3}\right)$	$-1.94 \pm 0.26^{\dagger}$	
*14	2012/01/02	14:30	N08W104 [C2.4]	1125	83	1443	-34	0.43	$2.1 \times 10^{4}\left(8.1 \times 10^{3}\right)$		
*15	2012/01/23	03:40	N28W021 [M8.7]	1775	91	2014	-157	0.46	$3.4 \times 10^{4}\left(8.7 \times 10^{3}\right)$	$-1.78 \pm 0.36^{\dagger}$	
*16	2012/01/27	18:15	N27W078 [X1.7]	1750	70	2468	-108	0.46	$8.7 \times 10^{4}\left(8.5 \times 10^{3}\right)$	$-1.70 \pm 0.19^{+}$	
*17	2012/03/04	11:05	N19E061 [M2.0]	1588	46	1497	-8	0.31	$8.4 \times 10^{4}\left(8.9 \times 10^{3}\right)$	$-2.41 \pm 1.29^{\dagger}$	
*18	2012/03/05	03:35	N17E052 [X1.1]	850	72	2231	-2	0.31	$1.5 \times 10^{6}\left(4.1 \times 10^{4}\right)$	$-1.98 \pm 0.20^{+}$	
*19	2012/03/07	00:20	N17E027 [X5.4]	2700	71	3303	13	0.31	$2.2 \times 10^{7}\left(1.9 \times 10^{4}\right)$	$-2.02 \pm 0.26^{\dagger}$	
*20	2012/05/17	01:30	N11W076 [M5.1]	1458	75	1807	-76	0.35	$8.7 \times 10^{4}\left(2.0 \times 10^{4}\right)$		
*21	2012/05/26	20:40	N15W116 [-]	1850	55	2665	-75	0.31	$1.9 \times 10^{4}\left(4.0 \times 10^{3}\right)$	-1.70 ± 0.53	
*22	2012/05/27	05:10	SIOE054 [C3.1]	1052	78	958	108	0.31	$1.3 \times 10^{5}\left(2.4 \times 10^{4}\right)$	$-2.56 \pm 0.96^{\dagger}$	
*23	2012/07/12	15:45^	S15W001 [X1.4]	1393	75	1617	4	0.46	$1.1 \times 10^{6}\left(5.5 \times 10^{3}\right)$	$-1.95 \pm 0.27^{\dagger}$	
24	2012/07/17	14:00 ${ }^{\text {a }}$	S20W065 [C9.9]	821	50	1245	59	0.46	$1.6 \times 10^{4}\left(2.8 \times 10^{3}\right)$		
25	2012/07/19	05:20	S13W088 [M7.7]	1500	71	1897	79	0.46	$2.6 \times 10^{4}\left(7.1 \times 10^{3}\right)$		
*26	2012/07/23	$02: 10{ }^{\text {¢ }}$	S17W132 [-]	1900	116	2520	116	0.45	$5.8 \times 10^{4}\left(9.5 \times 10^{3}\right)$	$-1.90 \pm 0.18^{\dagger}$	
27	2012/07/28	21:05	S25E055 [M6.1]	792	68	1255	-82	0.44	$5.4 \times 10^{4}\left(4.7 \times 10^{3}\right)$	$-2.11 \pm 0.42^{\dagger}$	
*28	2012/09/20	14:55	SlSE155 [-]	2600	54	3353	-29	0.42	$2.0 \times 10^{6}\left(2.5 \times 10^{4}\right)$	$-1.91 \pm 0.21{ }^{\dagger}$	
*29	2012/10/14	00:35	N13E137 [-]	1200	61	1502	-58	0.46	$1.9 \times 10^{5}\left(4.0 \times 10^{3}\right)$	$-1.93 \pm 0.15^{\dagger}$	
30	2013/03/16	05:45	S15W045 [C2.8]	260	61	\cdots	-14	0.43	$2.7 \times 10^{5}\left(5.0 \times 10^{4}\right)$	$-1.92 \pm 0.45^{\dagger}$	
*31	2013/04/11	07:00	N09E012 [M6.5]	1350	130	1602	-122	0.46	$2.2 \times 10^{4}\left(2.7 \times 10^{3}\right)$		
32	2013/04/24	21:40	N10W 175 [-]	560	73	1017	38	0.40	$3.3 \times 10^{6}\left(7.6 \times 10^{3}\right)$	$-2.22 \pm 0.16^{\dagger}$	
*33	2013/05/13	15:55	N11E085 [X2.8]	2000	84	2308	67	0.31	$2.4 \times 10^{4}\left(6.3 \times 10^{3}\right)$	-1.80 ± 0.59	
*34	2013/06/21	02:50 ${ }^{\circ}$	S16E073 [M2.9]	1428	60	2303	-67	0.46	$5.5 \times 10^{5}\left(4.7 \times 10^{3}\right)$	$-1.82 \pm 0.30^{\dagger}$	
35	2013/08/19	01:20 ${ }^{\text {a }}$	N10W $162[-]$	-	-	-	-13	0.32	$4.0 \times 10^{4}\left(1.5 \times 10^{4}\right)$	${ }^{-}$	
*36	2013/08/19	22:30	N08W178 [M3.38]	1149	118	1192	-1	0.32	$2.9 \times 10^{7}\left(1.0 \times 10^{4}\right)$	$-1.99 \pm 0.25^{\dagger}$	
*37	2013/10/11	07:10	N21E103 [M1.5]	875	160	1267	-56	0.43	$1.4 \times 10^{5}\left(4.6 \times 10^{3}\right)$	$-1.92 \pm 0.08^{+}$	
*38	2013/10/25	08:00	S10E073 [X1.7]	500	65	1188	-62	0.36	$2.2 \times 10^{5}\left(1.3 \times 10^{4}\right)$	$-1.85 \pm 0.16^{\dagger}$	
*39	2013/10/25	15:00	S06E069 [X2.1]	1225	69	1686	-59	0.36	$2.8 \times 10^{5}\left(5.4 \times 10^{4}\right)$	$-1.89 \pm 0.18^{\dagger}$	
*40	2013/10/28	15:10	S08E028 [M4.4]	1400	56	1393	-29	0.34	$8.1 \times 10^{5}\left(2.1 \times 10^{4}\right)$	$-1.97 \pm 0.06^{\dagger}$	
*41	2013/11/19	10:25	S15W069 [X1.0]	1138	52	1361	-41	0.34	$6.2 \times 10^{4}\left(5.4 \times 10^{4}\right)$	$-1.93 \pm 0.31^{\dagger}$	
*42	2013/11/30	05:10 ${ }^{\text {a }}$	N13W150[-]	-	-	-	2	0.40	$1.5 \times 10^{4}\left(4.9 \times 10^{3}\right)$	-	
*43	2013/11/30	15:00 ${ }^{\text {¢ }}$	S15E146 [-]	830	48	830	65	0.40	$1.6 \times 10^{4}\left(8.2 \times 10^{3}\right)$	-	
*44	2013/12/26	03:05	S09E166 [-]	1738	47	1753	-9	0.46	$1.1 \times 10^{6}\left(4.2 \times 10^{3}\right)$	$-2.02 \pm 0.38^{\dagger}$	
*45	2014/01/07	18:05	S15W011 [X1.2]	2190	61	2486	145	0.43	$3.2 \times 10^{4}\left(6.1 \times 10^{3}\right)$	-	
46	2014/01/28	00:30	S10E081 [C7.6]	-	-	-	-8	0.32	$5.9 \times 10^{3}\left(8.1 \times 10^{2}\right)$	${ }^{-}$	
47	2014/01/28	05:25	S14E088 [C9.3]		-		-16	0.32	$2.2 \times 10^{4}\left(2.7 \times 10^{3}\right)$	$-2.02 \pm 1.02^{+}$	
48	2014/01/30	16:05	S13E058 [M6.6]	1450	66	1367	2	0.31	$7.4 \times 10^{4}\left(7.1 \times 10^{3}\right)$	$-1.82 \pm 0.33^{\dagger}$	
49	2014/02/20	07:50	S15W073 [M3.0]	1103	70	1328	34	0.37	$1.3 \times 10^{4}\left(1.5 \times 10^{3}\right)$	- ${ }^{+}$	
*50	2014/02/25	00:45	S12E082 [X4.9]	2350	69	2431	-137	0.40	$5.5 \times 10^{4}\left(1.2 \times 10^{3}\right)$	$-1.91 \pm 0.47^{\dagger}$	
*51	2014/03/13	21:40 ${ }^{\text {a }}$	N15W 140 [-]	498	23	803	44	0.46	$2.3 \times 10^{4}\left(3.8 \times 10^{3}\right)$	-1.55 ± 0.31	
52	2014/08/08	16:15	S10W160 [-]	1035	57	1352	-41	0.33	$7.3 \times 10^{4}\left(6.2 \times 10^{3}\right)$	$-1.82 \pm 0.21^{+}$	
*53	2014/09/01	11:00	N14E127 [-]	1842	77	2947	-44	0.45	$2.9 \times 10^{7}\left(3.4 \times 10^{3}\right)$	$-1.81 \pm 0.03^{+}$	
54	2014/09/05	06:50	S14E069 [C6.8]	$565!$	56^{\prime}	NP	6	0.46	$8.6 \times 10^{4}\left(3.9 \times 10^{4}\right)$	-2.06 ± 0.65	
55	2014/09/08	23:55	N12E029 [M4.5]	1120	36	1077	39	0.47	$2.6 \times 10^{4}\left(5.4 \times 10^{3}\right)$	-	
*56	2014/09/10	17:30	N14E002 [X1.6]	1580	74	1427	64	0.47	$5.6 \times 10^{4}\left(1.0 \times 10^{4}\right)$	$-1.77 \pm 0.16^{+}$	
*57	2014/09/24	20:45	N13E179 [-]	1516	76	1651	-139	0.44	$5.3 \times 10^{4}\left(4.7 \times 10^{3}\right)$	$-2.19 \pm 0.13^{+}$	
58	2014/12/13	14:05	S20W143 [-]	2036 !	92!	$2519{ }^{\prime}$	-75 19	0.46	$7.8 \times 10^{6}\left(3.4 \times 10^{3}\right)$	$-1.92 \pm 0.26^{\dagger}$	
59	2015/02/21	09:30 ${ }^{\text {a }}$	S40W075 [B4.8] S01W $121[-1$	884 !	$65!$ $106!$	$1088!$ $2102!$	-19 -31	0.44 0.43	$3.8 \times 10^{4}\left(3.9 \times 10^{3}\right)$ $1.2 \times 10^{6}\left(1.3 \times 10^{4}\right)$	$-1.94+0.24^{\dagger}$	
$\begin{gathered} 60 \\ { }^{*} 61 \end{gathered}$	$\begin{aligned} & 2015 / 03 / 24 \\ & 2015 / 04 / 14 \end{aligned}$	$\begin{aligned} & 08: 30^{n} \\ & 09: 15^{\wedge} \end{aligned}$	$\begin{gathered} \text { S01W } 121[-] \\ \text { S15W } 100[\mathrm{~B} 9] \\ \hline \end{gathered}$	$\begin{aligned} & 13711^{!} \\ & 484^{!} \end{aligned}$	$\begin{aligned} & 106! \\ & 31^{!} \end{aligned}$	$2102!$ $N P$	-31 -119	0.43 0.32	$1.2 \times 10^{6}\left(1.3 \times 10^{4}\right)$ $1.5 \times 10^{4}\left(4.5 \times 10^{3}\right)$	$\stackrel{-1.94 \pm 0.24{ }^{\dagger}}{ }$	

e- peak intensity versus flare location

- The sample is truncated (high background level of the MESSENGER/EPS instrument)

Asymmetry in the SEE events showing the largest intensities->
Centroid arnd sigma by Lario et al. 2013 are used for defining well-connected events->
$-65^{\circ}<\mathrm{CA}<33^{\circ}$

Relations between e- peak intensity and solar source parameters

- Spearman, Pearson, and Kelly correlation methods used
- Corrected for the lower limit of peak intensity values measured by MESSENGER

Similar correlations (within uncertainties) between the SEE peak intensities and the flare or shock parameters
$\mathfrak{F i b l}$

Relations between e- peak intensity and solar source parameters

55 events (all), 26 events ($-65^{\circ} \leq C A \leq+33^{\circ}$)

The correlation of the peak electron intensity with the maximum speed of the 3D CME-driven shock at the apex is stronger and also more significant than that with the CME speed at the apex
The 3D CME geometry plays a moderate role in the acceleration of particles
\checkmark Both flare and shock-related processes may contribute to theacceleration of near relativistic electrons in large SEE events, in agreement with previous studies based on near 1 au data
\checkmark The maximum speed of the CME-driven shock is a better p parameter to investigate particle-acceleration-related mechanisms than the average CME speed, as suggested by the stronger correlation with the SEE peak intensities

Contact: I.rodriguezgarcia@uah.es

Link to the article

