Abstract id: EGU23-2526

Sharing not

permitted

Arsenic Contamination: Background

- Arsenic contamination in groundwater-soil-crop system: Highly toxic and widespread occurrence, worldwide epidemic.
- Argentina, Chile, Mexico, China, Hungary, India, Bangladesh, and Vietnam.
- arsenic: Geogenic (aquifer of Sources Anthropogenic (agricultural waste, industrial waste), and **Biogenic** mobilization into groundwater, enter the food chain via. irrigation.
- Arsenic exists in the following forms in groundwater, soil, and **[As(III)]**, Arsenite Arsenate plants: Monomethylarsonous acid [MMA(III)], Monomethylarsonic acid [MMA(V)], Dimethylarsinous acid [DMA(III)] and Dimethylarsinic acid **[DMA(V)]**.
- Arsenic is tasteless and odorless and toxicity symptoms are delayed.
- Arsenite [As (III)] is the most toxic form of arsenic and causes acute toxicity. Forms of arsenic such as As (III) and As (V) lead to chronic toxicity.

Objectives

- To assess the human health risks from arsenic toxicity on the basis of the international risk framework.
- Statistical assessment of cancerous and non-cancerous human health risks from arsenic toxicity.

Study Area

There are a few reasons behind selecting the study area: a *humid* sub-tropical region in India encompassing Ballia, Deoria, and Mau districts in the state of Uttar Pradesh.

- > They lie in the vicinity of the main stem of the **Ganga River**.
- \succ They are agriculturally fertile and substantially irrigated by arsenic-contaminated groundwater.
- > They are densely populated and hence provides better understanding of arsenic exposure among all age groups.

Fig. 1: Study Area for Human Health Risk Assessment (HHRA).

Assessment of Human Health Risks from Arsenic Contamination in Groundwater-Soil-Crop System of a Humid Sub-Tropical Region in India

Sana Dhamija* and Himanshu Joshi

Department of Hydrology, Indian Institute of Technology Roorkee, India sdhamija@hy.iitr.ac.in, himanshu.joshi@hy.iitr.ac.in

sediments),

[As(V)],

Figure 2: (A) Overall Approach (B) Approach for Human Health Risk Assessment (HHRA).

Results and Discussion

Hazard identification

Analytical Hierarchy Process (AHP) and Frequency Ratio (FR) methods.

HUMAN HEALTH RISK ASSESSMENT Gather Secondary Database Identify Potential Chemical od Concer Sample Collection Quantitative relationship between the exposed dosage and the probability of its toxic health effects **Reference dose (RfD) (**mg/kg/day): RfD = NOAEL (LOAEL) UFs NOAEL= no-observed-adverse-effect level UFs= uncertainty factors Analyze Possible Exposure Pathways Quantify the magnitude, frequency, and duration of arsenic intake **Chronic daily intake (CDI)** (mg/kg/d): $CDI = \frac{C \times IR \times EF \times ED}{CDI}$ C= concentration of arsenic in groundwater and crops (mg/l)/(mg/kg) R= Ingestion rate (L/dav)/(kg/person/d). EF=Exposure frequency (day/year) D= Exposure duration (vear). BW=Body weight (kg). Evaluate risk in terms of carcinogenic and non-carcinogenic Risks Carcinogenic Risk (CR): Non-Carcinogenic Risk (NCR) CR = CDI*SFNCR = $\frac{CD}{DC}$ Where, CDI= Chronic daily intake (mg/kg d) Where, CDI= Chronic daily intake (mg/kg d) SF = cancer-causing slope factor (mg/kg/d)RfD = Reference dose (mg/kg/d)

Predicted Groundwater Arsenic Vulnerability from Secondary Data (CGWB, 2015) employing

- Dose departure.
- 2005).

Exposure Assessment

- Possible Exposure Pathways :

Dose-Response Assessment

estimates the experimental from and observational impacts data is referred as the point of

Point of departures for cancer and non-cancer effects are near the lower observed range without any extrapolation and no-observed-adverse-effect level (NOAEL)/lowest-observed-adverse-effect level (LOAEL), respectively (EPA 2005a).

During the non-availability or lack of data, EPA's Integrated Risk Information System (IRIS) database is used as a reference for human health risk assessment i.e. RfD for Arsenic= 3.0 x 10⁻⁴ mg/kg/day (USEPA,