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O Geomorphic and sedimentary effects of modern climate change
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Key Points:

* Modern anthropogenic climate change
affects a vast range of geomorphic
seftings

+ We identify challenges of measuring
physical landscape response
to modern climate change and
opportunities to improve studies

+ Better understanding physical
landscape impacts will prepare
societies to manage hazards and
economic effects of climate change
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Abstract Today, climate change is affecting virtually all terrestrial and nearshore settings. This
commentary discusses the challenges of measuring climate-driven physical landscape responses to modern
global warming: short and incomplete data records, land use and seismicity masking climatic effects, biases
in data availability and resolution, and signal attenuation in sedimentary systems. We identify opportunities
to learn from historical and paleo data,_select especially sensitive study sites, and report null results to

better characterize the extent and nuances of climate-change effects. We then discuss efforts to improve
attribution practices, which will lead to better predictive capabilities. We encourage the Earth-science
community to prioritize scientific research on climate-driven physical landscape changes so that societies
will be better prepared to manage the effects on health and safety, infrastructure, water—food—energy security,
economics, and ecosystems that follow from climate-driven physical landscape change.

Plain Language Summary Modern global warming will ultimately affect physical landscape
processes virtually everywhere on Earth, and some of those effects are evident already. This commentary
describes the challenges to measuring climate-driven physical landscape responses to global warming: short
and incomplete data records, land use and earthquakes masking climatic effects, biases in data availability

and resolution, and climate signals becoming harder to read at the downstream end of a landscape. We discuss
ways to collect more informative data in key locations to better understand climate-change impacts, while also
diligently reporting where impacts are not evident. Forming a more complete picture in these ways will mean
societies are better prepared to predict and manage impacts on human health and safety, infrastructure, water—
food—energy security, economics, and ecosystems that are linked to climate-driven physical landscape change.
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01 High Mountain Areas - Earth’s water towers

O Mountain landscape instability in a changing climate
¢ “Mountain Water Towers” (Immerzeel et al., 2020; Viviroli et al., 2007)

pdaptation

® Faster climate change than global average (Pepin et al., 2015)

® Mountain landscape instability
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02 Rapid deglaciation and paraglacial processes
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® Unstable paraglacial landscapes (Church and Ryder, 1972)
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02 Slope instability and outburst floods following deglaciation
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® Landslide-lake outburst floods (LLOFs)
® Glacial lake outburst floods (GLOFsS)
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03 Increasing fluvial sediment loads in a warmer and wetter HMA
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Li, D., Lu X., Overeem, I., Walling, D., Syvitski J., Kettner, A. J., Bookhagen B., Zhou, Y., & Zhang, T. (2021). Exceptional increases in
fluvial sediment fluxes in a warmer and wetter High Mountain Asia. Science, 374(6567), 599-603.




03 Increasing fluvial sediment loads - a global perspective

nature reviews earth & environment
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i) | Check for updates

Warming-driven erosionand
sediment transportin cold regions
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Achim A. Beylich®, Michéle Koppes’ & XixiLu®'

Abstract

Sections

Rapid atmospheric warming since the mid-twentieth century has
increased temperature-dependent erosion and sediment-transport
processesin cold environments, affecting food, energy and water
security. In this Review, we summarize landscape changesin cold
environmentsand provide aglobal inventory of increasesin erosion
and sediment yield driven by cryosphere degradation. Anthropogenic
climate change, deglaciation, and thermokarst disturbances are
causing increased sediment mobilization and transport processesin
glacierized and periglacierized basins. With continuous cryosphere
degradation, sediment transport will continue to increase until
reaching a maximum (peak sediment). Thereafter, transportis likely
to shift fromatemperature-dependent regime toward a rainfall-
dependent regime roughly between 2100-2200. The timing of the
regime shift would be regulated by changes in meltwater, erosive
rainfall and landscape erodibility, and complicated by geomorphic
feedbacks and connectivity. Further progress in integrating
multisource sediment observations, developing physics-based
sediment-transport models, and enhancing interdisciplinary and
international scientific collaboration is needed to predict sediment
dynamics in awarming world.

Introduction

Ongoing cryosphere
degradation

Changing dynamics
of sediment transport

Observed increases
in sediment fluxes

Projections and peak sediment

Challenges and complexity

Summary and future
perspectives

76 rivers and 18 permafrost coasts!
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04 Impacts on water quality

O Water quality: fine sediment bonded with phosphorus and most heavy metals
(e.g., mercury, chromium, arsenic, and lead, etc.)
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\ E Climate change is flushing more sediment into the rivers that pour out of Asia’s high mountains
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Water quality of the Asian Water Tower is far less studied than water quantity, but expected
increases in upstream riverine chemical fluxes and lowland pollutant release could exacerbate
water quality deterioration downstream. Data sharing, integrated modelling, and joint actions
are needed to mitigate this problem.
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fluxes in a warmer and wetter High Mountain Asia. Science, 374(6567), 599-603.




04 Impacts on hydropower

O Hydropower systems
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05 Several thoughts

O Climate change and cryosphere degradation are destabilizing high mountain

O

landscapes

Future needs

Landscape studies: paraglacial adjustments,
glacial/permafrost erosion and related sediment yields

Cascading processes: cascading links between climate
change, glacier retreat, slope instability, outburst floods

Securing water quality: better monitoring of sediment and
related contaminant fluxes

Climate-resilient infrastructure: forward-looking planning,
adaptation capacity expansion, and rapid recovery

Transboundary collaboration: transboundary coordination
and data-sharing and joint-operation strategies
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