
Assessing the quality of gridded Climate

Data Records of Surface Irradiance using

global Reference Data Sets

Jörg Trentmann, Uwe Pfeifroth

Introduction

Gridded climate data records of surface irradiance (either based on satellite measurements or derived from reanalysis) are available for the analysis of climate variability and climate trends. A thoroughful anaylsis of the quality of these data records is mandatory for the proper selection of data records and the interpretation of the results. Here, we assess the quality of six gridded data records by comparing them to surface radiation measurements from the GEBA archive.

Gridded Climate Data Records

Data Set	Coverage	Resolution
CM SAF CLARA-A3	1979 – ongoing	0.25 deg
CERES-EBAF, Edition 4.2	2000 – 2022	1 deg
GEWEX-SRB, Rel4-IP	1982 – 2017	1 deg
ESA Clouds CCI, V3	1982 – 2020	0.5 deg
ERA-5 Reanalysis	1959 – ongoing	0.25 deg
MERRA-2 Reanalysis	1990 - ongoing	0.625 / 0.5 deg

Reference Data

- Global Energy Balance Archive (GEBA, • https://geba.ethz.ch/)*
- Data available since about 1950s •
- Monthly surface irradiance data from > 1000• stations
- ,Poor-mans' quality check applied

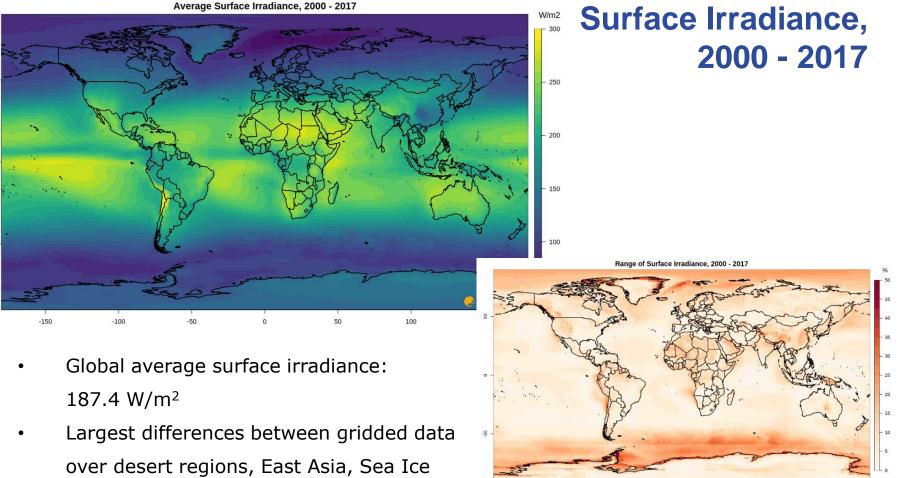
*We thank all contributors for collecting and providing surface radiation data! GEBA is co-funded by the Federal Office of Meteorology and Climatology MeteoSwiss within the framework of GCOS Switzerland.

Methodology

- Comparison with GEBA data for 2000 2017 and full period.
- Focus on accuracy, trend / stability
- Average irradiance derived w/o MERRA-2; average trend derived w/o MERRA-2 and GEWEX-SRB

Validation Results, Surface Irradiance

	Full Time Period			2000 – 2017				
Data Set	#	bias [W/m²]	MAD [W/m ²]	Stab. [W/m²/dec]	#	bias [W/m²]	MAD [W/m²]	Stab. [W/m²/dec]
CLARA-A3	226,872	5.2	11.6	[-0.3, -0.1, 0]	78,929	3.7	9.2	[-0.8,-0.3,0.1]
CERES	94,741	1.7	9.5	[-0.6, -0.3, 0]	79,644	1.8	9.7	[-0.5,-0.1,0.2]
GEWEX	190,727	6.3	14.1	[-0.5, -0.2, 0.2]	79,644	4.5	12.2	[-0.5, 0.3, 1.2]
ESA CCI	211,317	6.7	13.7	[-0.4, 0, 0.2]	79,644	4.5	11.3	[-1.8, -1.0, -0.2]
ERA-5	259,762	8.0	13.7	[-0.3, -0.1, 0.2]	79,644	7.2	11.9	[-2.1, -1.2, -0.3]
MERRA-2	228,844	22.4	25.7	[-1.4, -0.9, -0.3]	79,644	19.4	22.4	[-3.5, -1.6, 0.3]


#: number of monthly data used for the evaluation, bias: mean difference; MAD: mean absolute difference; Stab: stability, derived from the linear trend of the bias (incl confidence interval)

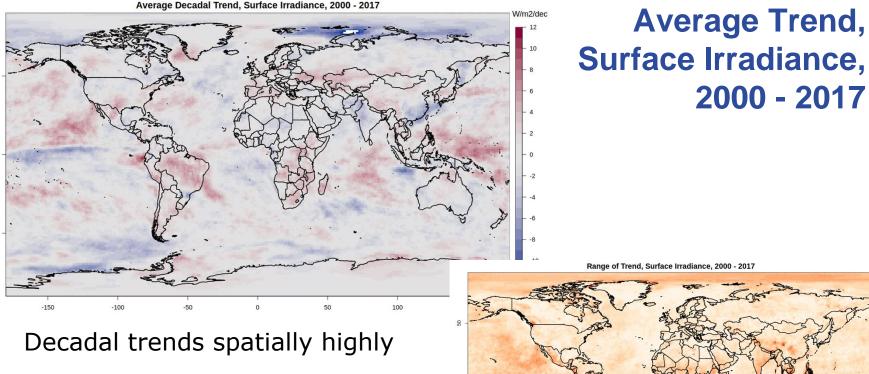
DWD

areas, West Coast of South America

20

0

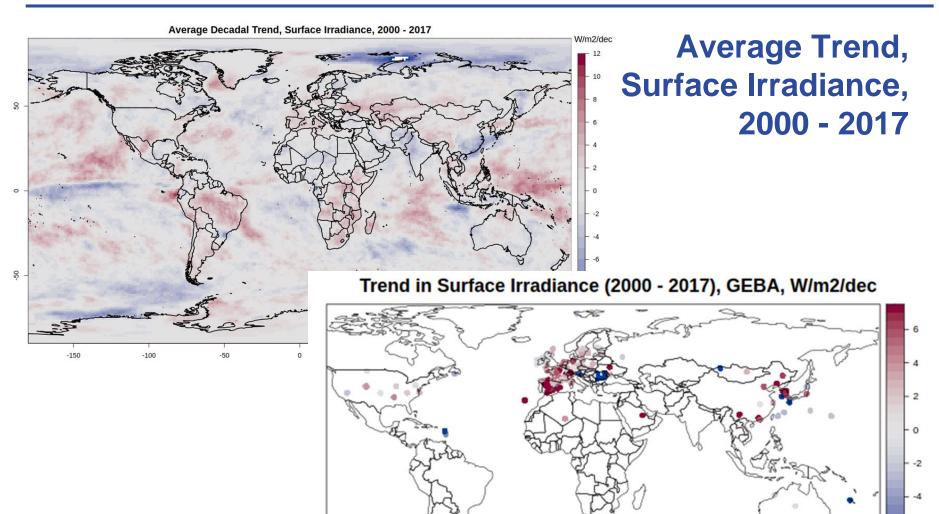
-50



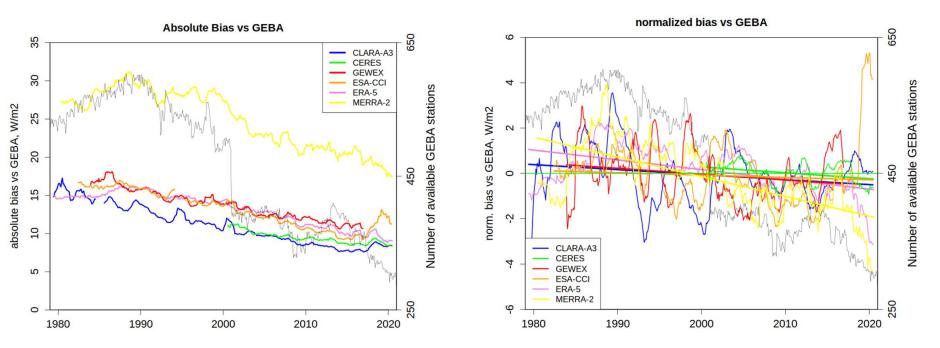
DWD

W/m2/dec

- variable
- Large differences: Pacific, Indonesia, South America, Central Africa.

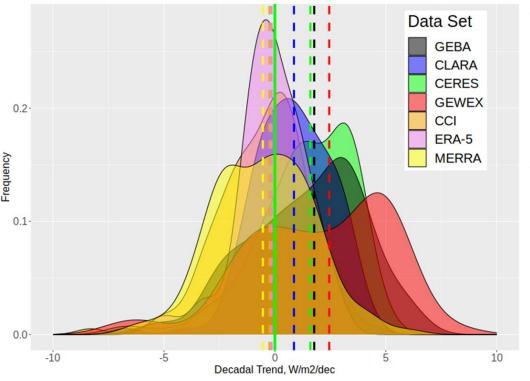

150

DWD



Temporal evolution of absolute bias, normalized bias

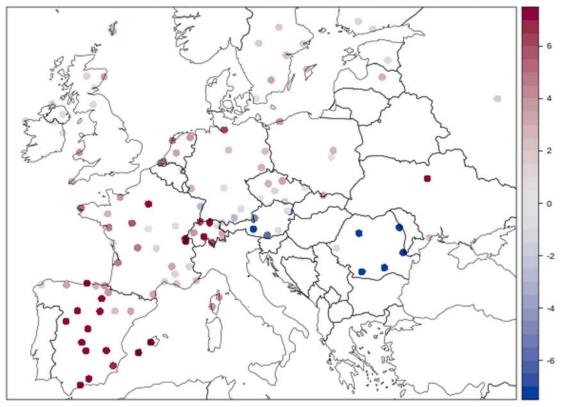
- Number of available stations in GEBA drops sharply in 2000.
- Comparison to GEBA data improves with time for all data sets; accuracy of MERRA-2 substantially reduced compared to other data sets
- Higher temporal stability for satellite-derived than for reanalysis data sets.



Decadal Trends, **2000 – 2017**

SIS Decadal Trends at GEBA stations

- The majority of GEBA stations indicate a positive trend in surface irradiance (2000 – 2017).
- Most satellite-derived data sets correspond better to the trends derived from GEBA.

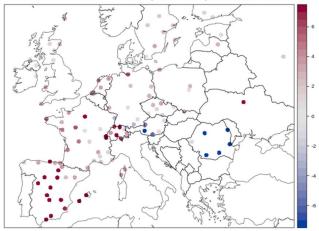


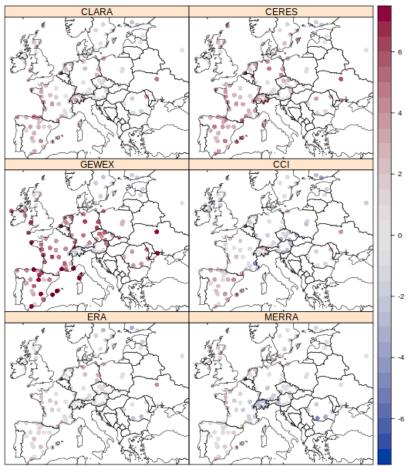
DWD

Europe, Trends in Surface Irradiance, 2000 - 2017

Trend in Surface Irradiance (2000 - 2017), GEBA, W/m2/dec

- Increase in surface irradiance in Europe
- Largest increase in Spain / Switzerland; decrease in Romania

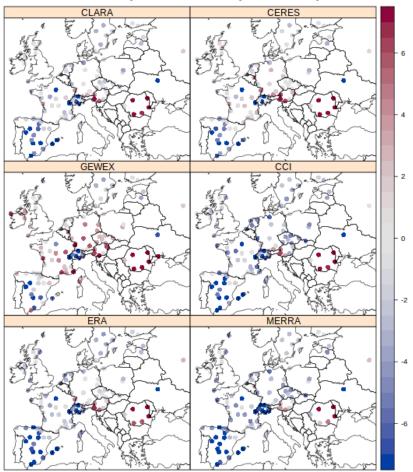




Europe, Trends in Surface Irradiance, 2000 - 2017

Trend in Surface Irradiance (2000 - 2017), GEBA, W/m2/dec

 Comparable trends for all gridded data sets Trend in Surface Irradiance (2000 - 2017), W/m2/dec



Europe, Trends in Surface Irradiance, 2000 - 2017

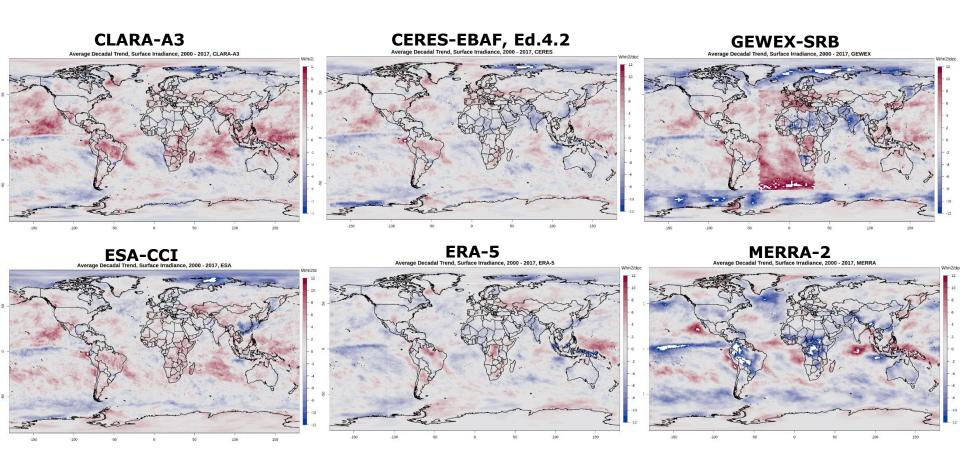
Trend in Surface Irradiance (2000 - 2017), GEBA, W/m2/dec

- Largest deviations with GEBA in Spain, Switzerland and Romania
- Consistent deviations of gridded data sets indicate problems in reference data

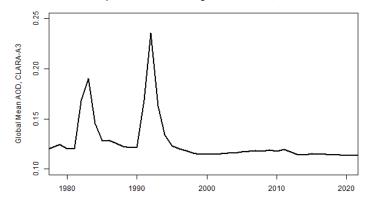
Trend in Bias compared to GEBA, (2000 - 2017), W/m2/dec

Summary and Conclusions

- Six global gridded climate data records of surface irradiance have ٠ been compared to surface reference measurements from GEBA
- Accuracy: Most data records perform comparable (MAD between 9) ٠ and 12 W/m²), exception MERRA-2.
- Stability: Satellite data (exception ESA CCI) tend to be more stable than reanalysis; depending on considered time period.
- Global surface irradiance (2000 to 2017): 187 W/m²; trend: spatially very heterogeneous.
- Regions with largest differences between the gridded data records ٠ have been identified.
- Most GEBA stations experience a positive trend.
- Systematic differences, e.g., in Spain, Romania, indicate problems in GEBA reference data.



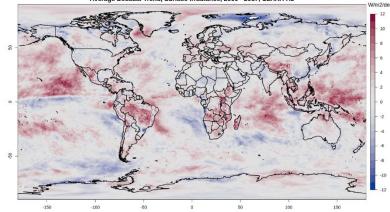
Decadal Trends of Gridded Datasets (2000 – 2017)



Assessing the impact of aerosol variability on

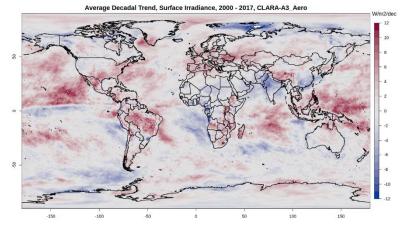
CLARA-A3 retrieval and derived trends

- CLARA-A3 uses monthly climatological aerosol information to derive daily mean clear-sky surface irradiance (used to estimate daily all-sky radiation) Temporal Evolution of the global mean AOD, CLARA-A3
- Dynamic Aerosol (Fielder et al., 2019 a,b):
 - MACv2 natural aerosol
 - Anthropogenic aerosol: • MACv2-SP (1979 - 2014) + SSP2-45 scenario (2015 - 2020)
 - Stratospheric Aerosol: GISS
- Monthly aerosol information used to derived daily clear-sky surface radiation.
- Comparison of surface irradiance from CLARA-A3_Aero to CLARA-A3

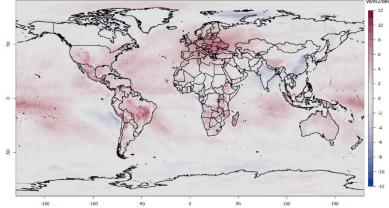


Impact of CMIP6 aerosol variability on CLARA-A3 retrieval

CLARA-A3, 2000 - 2017


Average Decadal Trend, Surface Irradiance, 2000 - 2017, CLARA-A3

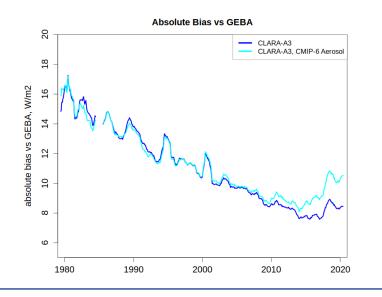
CLARA-A3, 1979 - 2020 Average Decadal Trend, Surface Irradiance, 1979-2020, CLARA-A3

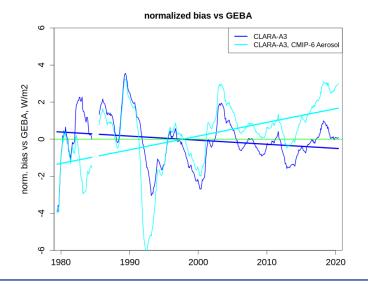


CLARA-A3_Aero, 2000 - 2017

CLARA-A3_Aero, 1979 - 2020

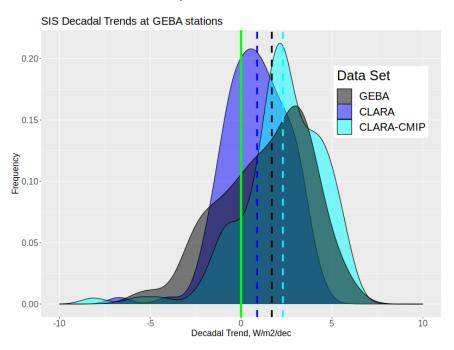
Average Decadal Trend, Surface Irradiance, 1979-2020, CLARA-A3_Aero

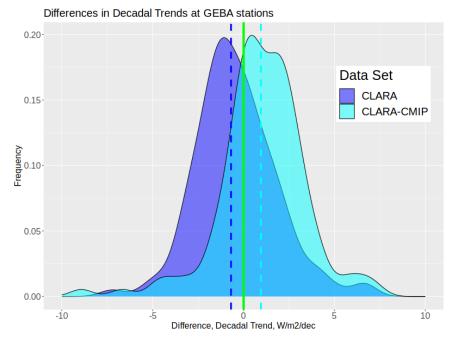




Comparison with GEBA

	Full Time Period				2000 – 2017			
Data Set	#	bias [W/m²]	MAD [W/m²]	Stab. [W/m²/dec]	#	bias [W/m²]	MAD [W/m²]	Stab. [W/m²/dec]
CLARA-A3	226,872	5.2	11.6	[-0.3, -0.1, 0]	78,929	3.7	9.2	[-0.8,-0.3,0.1]
CLARA-A3 Aero	226,872	4.8	11.8	[0.5, 0.8, 1.0]	78,929	5.1	9.6	[-0.2,0.4,1.0]

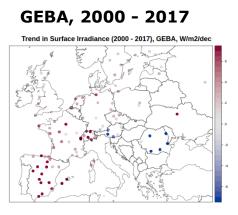


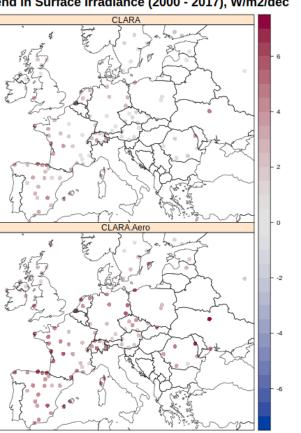

DWD

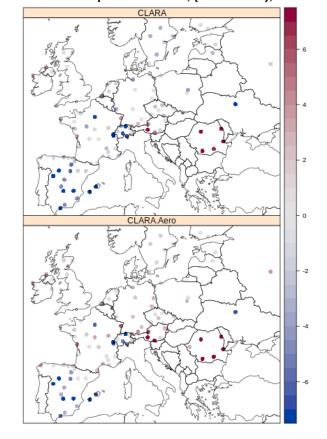
Comparison with GEBA; Trends w and w/o aerosol variability

Decadal Trends, 2000 - 2017

Differences in Decadal Trends, 2000 - 2017

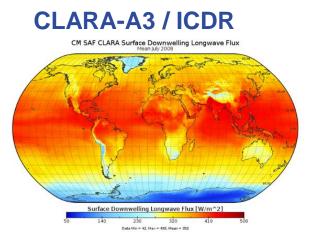


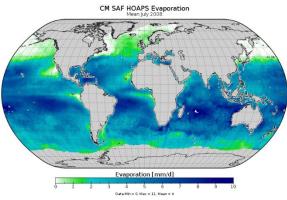


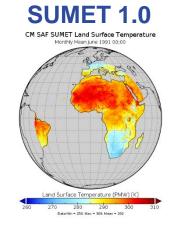


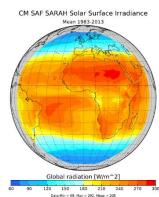
Comparison with GEBA; Europe

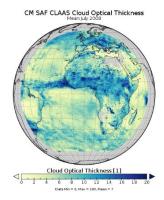
Trend in Surface Irradiance (2000 - 2017), W/m2/dec Trend in Bias compared to GEBA, (2000 - 2017), W/m2/dec

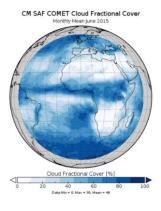





CM SAF Climate Data Records


HOAPS 4.0


- CM SAF provides a variety of global and regional climate data records on clouds, radiation, surface parameters (e.g., LST), precipitation (ocean only)
- Availability: 1979 to the day before yesterday
- Resolution: Daily, monthly / 0.05°, 0.25°, 1°
- All data are freely available at <u>www.cmsaf.eu</u>


SARAH-3 / ICDR

CLAAS-3 / ICDR

COMET 1.0

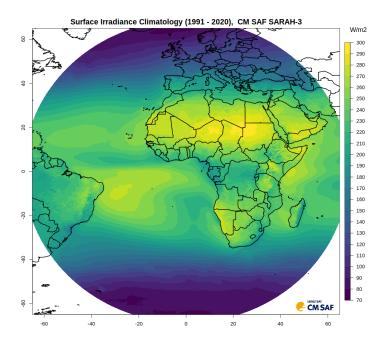
CM SAF SARAH-3

Variables

EUMETSAT

CLIMATE MONITORING

- → Surface Solar Irradiance (SIS)
- → Surface Direct Irradiance (SID, DNI)
- → Sunshine Duration (SDU)
- Photosynthetic Active Radiation (PAR)
- → Daylight (DAL)
- → Effective Cloud Albedo (CAL)


Resolution

- → Spatial: 0.05° × 0.05°
- → Temporal: 30-min, daily-, monthly mean

Coverage

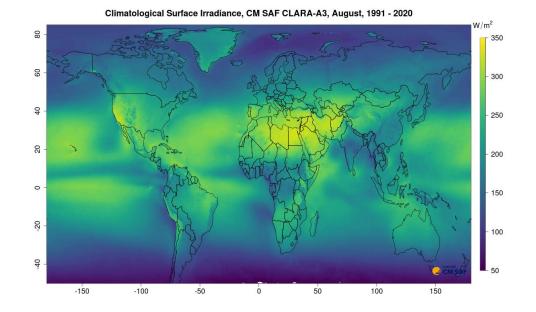
- → Spatial: regional (±65°)
- → Temporal: 1983 to 2020
- Available in May 2023 at <u>www.cmsaf.eu</u> currently available via: <u>contact.cmsaf@dwd.de</u>

Surface Solar Radiation Dataset – Heliosat

Müller, R. et al. (2015) *Remote Sens., 7*, 8067-8101, doi:10.3390/rs70608067 Pfeifroth, U. et al.. (2018) *J. Geophys, Res., 123,* 1735-1754, doi:10.1002/2017JD027418.

DOI:10.5676/EUM_SAF_CM/SARAH/V003

CM SAF CLARA-A3


Variables

- Cloud properties
- → Surface albedo
- Surface Radiation
- ➔ ToA Radiation

Resolution

- → Spatial: 0.25° × 0.25°
- Temporal: daily-, pentad-, monthly mean

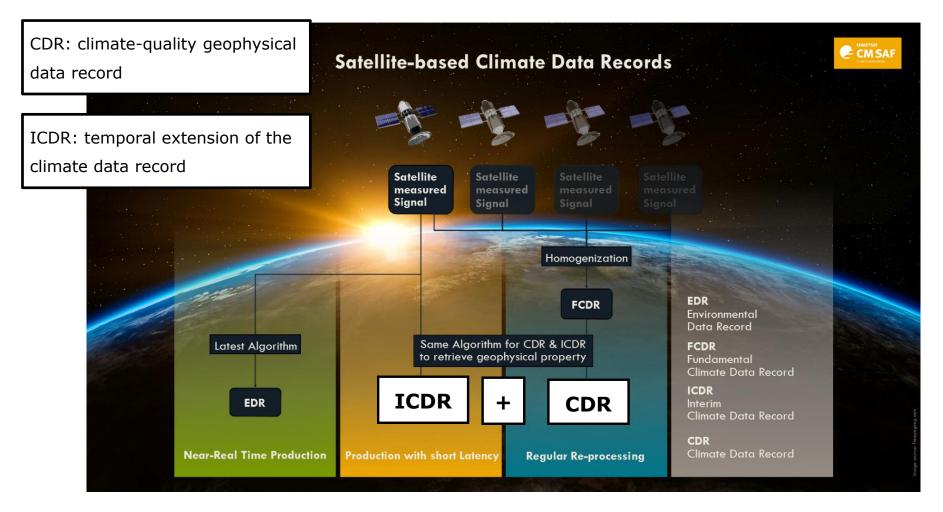
CM SAF Clouds, Albedo and Radiation dataset from AVHRR

Coverage

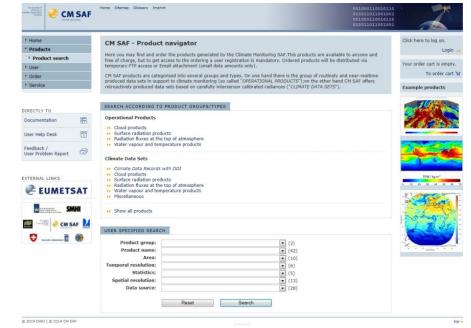
- → Spatial: global
- → Temporal: 1979 to 2020
- Available in May 2023 at <u>www.cmsaf.eu</u> currently available: CLARA-A2.1

Karlsson, K.-G. et al., (2017), *Atmos. Chem. Phys., 17*, 5809-5828, doi:10.5194/acp-17-5809-2017

DOI:10.5676/EUM_SAF_CM/CLARA_AVHRR/V003



Climate Data Record + Interim Climate Data Record

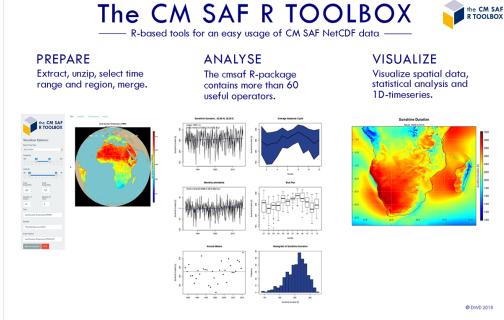


Data Access

→ Web User Interface

- → Easy selection and online ordering
- ➔ Possibility of regular data delivery
- Postprocessing
 - → Spatial, temporal selection
- → Data format (NetCDF)
- ➔ Download via https or sftp
- → All data free of charge
- EUMETCast
- Jser Help Desk

https://wui.cmsaf.eu



CM SAF R Toolbox

www.cmsaf.eu/R toolbox

- CM SAF provides the CM SAF R Toolbox (based on the open source software R)
- Designed to access, analyse, and visualize CM SAF (and other SAF) data
- No programming skills required
- Can be used within scripts or as a stand-alone GUI
- → (Video-)Tutorials available

