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A B S T R A C T   

Large groundwater level (GWL) data sets are often patchy with hydrographs containing continuous gaps and 
irregular measurement frequencies. However, most statistical time series analyses require regular observations, 
thus hydrographs with larger gaps are routinely excluded from further analysis despite the loss of coverage and 
representativity of an initially large data set. Missing values can be filled in with different imputation methods, 
yet the challenge is to assess the imputation performance of automated methods. Assessment of such methods 
tends to be carried out on randomly introduced missing values. However, large GWL data sets are commonly 
dominated by more complex patterns of missing values with longer contiguous gaps. This study presents a new 
artificial gap introduction approach (TGP- typical gap patterns) that improves our understanding of automated 
imputation performance by mimicking typical gap patterns found in regional scale groundwater hydrographs. 
Imputation performance of machine learning algorithm missForest and imputePCA is then compared with 
commonly applied linear interpolation to prepare a gapless daily GWL data set for the Baltic states (Estonia, 
Latvia, Lithuania). We observed that imputation performance varies among different gap patterns, and perfor-
mance for all imputation algorithms declined when infilling previously unseen extremes and hydrographs 
influenced by groundwater abstraction. Further, missForest algorithm substantially outperformed other methods 
when infilling contiguous gaps (up to 2.5 years), while linear interpolation performs similarly for short random 
gaps. The TGP approach can be of use to assess the complexity of missing observation patterns in a data set and 
its value lies in assessing the performance of gap filling methods in a more realistic way. Thus the approach aids 
the appropriate selection of imputation methods, a task not limited to groundwater level time series alone. The 
study further provides insights into region-specific data peculiarities that can assist groundwater analysis and 
modelling.   

1. Introduction 

Assessment of groundwater resources at the regional scale is essen-
tial to sustainably manage transboundary aquifers and secure water 
supply (Kitterød et al., 2022; Wunsch et al., 2021). The EU Water 
Framework Directive requires member states to ensure good quantita-
tive status of groundwater bodies by timely detection of negative trends 
posing a risk for resource depletion and deterioration of groundwater 
dependent ecosystems (WFD, 2000). Groundwater level time series or 
hydrographs are fundamental to evaluate the dynamics of a ground-
water system (Zaadnoordijk et al., 2019). Often the groundwater level 
data sets compiled at the regional scales are patchy and spatially un-
evenly distributed (Barthel et al., 2021). Groundwater hydrographs 

rarely have equal observation periods and frequencies, and missing 
values are ubiquitous (Asgharinia and Petroselli, 2020; Peterson et al., 
2017). The commonly required observation regularity is daily or weekly 
data (e.g. Haaf et al. (2020); Rajaee et al. (2019); Zanotti et al. (2019)), 
therefore, direct application of groundwater level time series in the 
further analysis is often hindered by the presence of gaps. Despite the 
omnipresent gaps and their negative impact on further usage of time 
series, there are no standardized methods for the estimation of missing 
groundwater heads (Dwivedi et al., 2022). Also, regional scale data sets 
are generally too large to infill gaps manually and individually. There-
fore, it is more common to apply-one automated method to all time 
series. The simplest approach is to remove any time series containing 
missing values (e.g. Nygren et al. (2020)) or those above a defined 
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threshold (e.g. Heudorfer et al. (2019)). This approach is often justified 
by convenience, e.g., to fulfil the requirement of statistical software 
packages that do not support missing values (Dax and Zilberbrand, 
2017; Emmanuel et al., 2021). Still, removing all time series with 
missing values (including gaps created during the correction process) 
may lead to a significant reduction of initially large groundwater level 
data sets. Retike et al. (2022) report that strict application of such an 
approach would lead to eightfold reduction of number of available time 
series (from 612 to 76 groundwater hydrographs), while Haaf and 
Barthel (2018) had to remove almost 90 % of data (from 4002 to 512 
groundwater hydrographs). Wendt et al. (2020) removed all time series 
having more than 6 months long gaps and it reduced the initial data set 
from 660 to 170 hydrographs. To resolve this, imputation methods are 
used. 

A common technique in handling missing observations in a time 
series is summary statistic imputation, that uses a single value – such as 
mean, mode or median obtained from the available observations to infill 
the missing values. However, this risks creating biases by introducing 
too many similar values (Pratama et al., 2016). Nevertheless, summary 
statistic imputation is routinely used to treat large databases because of 
its simplicity (e.g., Asgharinia and Petroselli (2020)). Even more com-
mon is linear interpolation for infilling relatively short gaps in ground-
water level time series. The average length of linearly interpolated gaps 
in groundwater hydrographs by Lehr and Lischeid (2020) is 24.3 days 
(the maximum being 88 days). Likewise, Wunsch et al. (2021) interpo-
late up to one-month short sequences of missing data linearly. Sorensen 
et al. (2021) use linear interpolation to infill equal to or less than 3 
months-long breaks given the slow response typically observed within 
the aquifers in drylands. While Wendt et al. (2020) apply linear inter-
polation to fill less than 6 months long data gaps. To sum up, simple 
imputation methods, like summary statistic imputation and linear 
interpolation from the last observation to the next, remain attractive to 
fill relatively short gaps in groundwater hydrographs. 

The interest in using machine learning techniques to infill missing 
groundwater levels has increased due to their ability to deal with com-
plex data sets (Dax and Zilberbrand, 2017; Dwivedi et al., 2022; Khedri 
et al., 2020; Rajaee et al., 2019; Vu et al., 2021). According to Retike 
et al. (2022) various gap patterns can be observed in national ground-
water level databases, such as short gaps around extremes due to well 
completion problems or longer, contiguous gaps arising from malfunc-
tion or misplacement of automatic level loggers, and due to changes in 
monitoring programmes. For instance, Dwivedi et al. (2022) observe 
that it is relatively simple to accurately impute gaps in groundwater 
hydrographs that are introduced at random, but it is more challenging to 
infill contiguous gaps, especially around extremes. Deep learning tech-
niques have been applied to impute as long as 47 years long gaps in 
groundwater hydrographs using piezometers as predictors that share the 
same hydrogeological context and characteristics with varying accuracy 
(RMSE 0.07 m to 1.08 m) (Vu et al., 2021). Oikonomou et al. (2018) 
emphasize that infilling missing values in groundwater hydrographs 
become an extremely difficult task when observations have low tem-
poral and spatial frequency and represent highly dynamic groundwater 
systems. In such cases, most conventional data imputation methods are 
expected to fail. Approaches exist that reconstruct groundwater levels 
using observations from nearby wells (Dwivedi et al., 2022) or are 
supported with different types of auxiliary data, such as Earth obser-
vation data (e.g., Evans et al., 2020) or physiographic controls (Haaf 
et al., 2022). More advanced methods like missForest and imputePCA 
may be more promising and have hardly been tested on groundwater 
level data sets. 

The non-parametric and iterative missForest method (Stekhoven and 
Bühlmann, 2012) is based on a random forest algorithm (Breiman, 
2001) and designed for imputation of missing values by using the entire 
data set instead of imputation of one time series at a time. The approach 
has gained attention in several research fields including hydrology 
(Arriagada et al., 2021; Sidibe et al., 2018) and hydrogeology (Naranjo- 

Fernández et al., 2020). Among the major advantages of the missForest 
method are automatic and unsupervised missing data imputations that 
do not require assumptions about data distribution nor need tuning 
parameters. Further, the method is suitable for multivariate data sets 
with lots of missing data (Stekhoven and Bühlmann, 2012). Multiple 
authors report that missForest outperforms some well-known imputa-
tion methods, such as mean, nearest neighbour, linear regression and 
parametric methods (Alsaber et al., 2021; Arriagada et al., 2021; Stek-
hoven and Bühlmann, 2012; Waljee et al., 2013). The computational 
and thus time demand of the missForest, however, is large (Feng et al., 
2014; Tang and Ishwaran, 2017). Another multiple imputation method 
is imputePCA (Josse and Husson, 2016), initially designed to impute 
missing data to perform principal components methods on incomplete 
data sets. The imputePCA has been used in meteorology (Benahmed and 
Houichi, 2018), but so far has not been applied in hydrogeology. 

The performance of imputation algorithms can be assessed by 
introducing artificial missing values and then comparing the results of 
imputed values versus the original measurements. Several approaches 
exist how to choose lengths and distribution for artificial gaps in time 
series (Garciarena and Santana, 2017; Junninen et al., 2004). Often gaps 
are introduced at random with certain missing data percentages that can 
vary from 10 % up to 90 % of missingness in the data set (Dwivedi et al., 
2022; Stekhoven and Bühlmann, 2012; Yadav and Roychoudhury, 
2018). For instance, Arriagada et al. (2021) set thresholds that some-
what mimic the distribution of missing values in the raw data set. Af-
terwards, the modelled values are compared to the original observations 
using various metrics e.g., root mean square error (RMSE) and Nash- 
Sutcliffe efficiency (NSE) (Brakkee et al., 2022; Koch et al., 2019; 
Moriasi et al., 2015; Tao et al., 2022; Wang et al., 2018; Wunsch et al., 
2022). 

To understand how imputation methods perform with more erratic 
and longer gaps we present a new approach that introduces gaps that 
mimic typical gap patterns (TGP) found in regional scale data sets. Then 
we compare the performance of three data imputation methods (mis-
sForest, imputePCA and linear interpolation) through the evaluation of 
artificially introduced gaps with the proposed TGP and commonly 
applied random gap patterns (RGP). 

2. Materials and methods 

2.1. Study region 

The Baltic states (Estonia, Latvia and Lithuania) are located in north- 
eastern Europe. The region is characterized by a humid temperate 
climate affected by the Baltic Sea to the west and the Eurasian landmass 
to the east. According to the Köppen-Geiger classification, areas closer to 
the Baltic Sea are attributed to the temperate oceanic climate (Cfb), 
while the areas inland experience a warm-summer humid continental 
climate (Dfb) (Kottek et al., 2006). The median annual average tem-
perature ranges from 5.3 to 8.6 ◦C, precipitation from 566 to 770 mm/ 
year (1991–2020, E-OBS data set: (Cornes et al., 2018)). The elevation 
varies from slightly below the sea level up to 318 m in the uplands. The 
land surface topography is defined to a large extent by the repeated 
advances of the quaternary ice sheets and their meltwater streams and 
lakes (Kalm et al., 2011; Zelčs et al., 2011). The region is characterized 
by distinct seasonality and negative temperatures with snow accumu-
lation in the cold season. During the springtime, the first groundwater 
recharge maximum is driven by the snowmelt water infiltration, while in 
the period from September to December the second recharge maximum 
results from increased precipitation and low evapotranspiration (Babre 
et al., 2022). Generally, groundwater recharge takes place in the upland 
areas and discharges towards the Baltic Sea (Virbulis et al., 2013). 

The Baltic states are situated on the multi-layered sedimentary Baltic 
Artesian Basin (BAB) with the thickness of sedimentary cover ranging 
from about 200 m in the North up to 6000 m in the South. The BAB 
comprises layers of clastic, carbonatic and in places evaporite 
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sedimentary rocks gently dipping from northeast to southwest. The BAB 
holds vast amounts of groundwater with distinct chemical composition. 
The main aquifer systems used for water supply are formed of weakly 
cemented terrigenous and carbonate sedimentary rocks that fill the 
whole BAB overlain by Quaternary deposits (mostly glacial, glaciola-
custrine, glaciofluvial and marine sediments). The aquifers are mostly 
confined, while unconfined aquifers are found in Quaternary sediments. 
A comprehensive overview of the hydrogeological setting and ground-
water quality in the study region can be found in Kitterød et al. (2022). 

2.2. Data and overall workflow 

The workflow of this study (see Fig. 1) was driven by the motivation 
to create gapless daily groundwater level time series for future research 
needs, namely, the identification of features controlling groundwater 
dynamics in the Baltic states and groundwater responses (rechange, 
groundwater-surface water interaction) at the event scale (e.g. using 
indices by Heudorfer et al., 2019). Thus, an effort was made to save as 
many wells as possible and to retain good spatial coverage. 

The raw groundwater level data were requested from the national 
managing authorities: The Estonian Environment Agency; Latvian 
Environment, Geology and Meteorology Centre; and Lithuanian 
Geological Survey. Groundwater level measurements from 465 wells 
with at least a single full month of daily observations were available for 
the period 2005–2021. The measurement frequency of the three data 
sets varied from daily (Lithuania) to sub-daily (Latvia, Estonia), where 
the latter was downsampled to daily frequency. 

Combining the needs for adequate imputation performance assess-
ment and future research, the final workflow contains following steps:  

1. Pretreatment of daily groundwater hydrographs (step 1 in Fig. 1) was 
carried out according to Retike et al. (2022) approach by visually 
screening for errors and applying necessary corrections. Pretreat-
ment was applied to all 465 groundwater level time series. Out of 
total 2.66 million level measurements, 5.33 % were deleted and 
15.97 % modified. Wells having anthropogenic influence (e.g., 

trends due to groundwater abstraction), as well as extreme drought 
episodes, were retained in the data set (Retike et al., 2022).  

2. Selection of groundwater hydrographs according to the following 
constraints:  
a. Temporal constraints. Identification of a period when most daily 

groundwater hydrographs are available for all three Baltic states - 
Estonia, Latvia, Lithuania. 

b. Missingness and spatial constraints. This step involves identifi-
cation of the maximum acceptable fraction of missing values in 
groundwater hydrographs that still can produce appropriate 
modelling results in combination with balancing the need for 
good spatial coverage of the wells.  

3. The artificial gaps (step 3 in Fig. 1) were introduced as missing values 
at random (random gap patterns - RGP) and as typical gap patterns 
(TGP).  

4. Artificial gaps were infilled (step 4 in Fig. 1) using missForest, 
imputePCA and linear interpolation methods in 12 calculation setups 
summarized in Table 1. 

5. Imputation outcomes were assessed using NSE (Nash-Sutcliffe effi-
ciency) and NRMSE (normalized root mean square error) metrics 
(step 5 in Fig. 1) by evaluating relationships between the perfor-
mance of applied models. 

2.3. 2.3. Preparation of artificial gaps 

We clustered missing values in time series to identify the main gap 
patterns and their characteristics (such as length of consecutive gaps or 
spatial location of gaps (e.g. at the beginning, end or middle)) which 
could be further used to introduce artificial gaps. These groups mimic 
missing value patterns found in a particular data set. These groups, 
further called typical gap patterns (TGP) were identified in two steps. 
Firstly, groundwater hydrographs were transformed into a binary series 
by coding missing values as “0′′ and non-missing values as “1”. Then, on 
the binary series, TGP were identified using hierarchical cluster analysis 
(HCA) with a binary distance measure. The “agnes” function from R 
package “cluster” (version 2.1.2.) was used to carry out HCA with Ward 
linkage (Maechler et al., 2021; Murtagh and Legendre, 2014; Ward, 
1963). Each cluster consisted of a number of hydrographs and if more 
than half of hydrographs had missing values in the same day, the whole 
day was treated as a missing value in a particular TGP. Random gap 
patterns were created from the data set with missingness rates of 10 %, 
20 %, 30 %, 40 % and 50 % using simple random sampling. 

2.4. Imputation methods and procedure 

2.4.1. The missForest algorithm 
The missForest algorithm (Stekhoven and Bühlmann, 2012) is based 

on a random forest (RF) algorithm where many decision trees are grown 
and averaged (Breiman, 2001). Simply speaking the algorithm uses 
donor hydrographs from the entire data set for target hydrograph 
imputation based on correlation of the non-missing parts between target 
and donors. Then, the gap in the target hydrograph is imputed through 
random forest regression based on all donor hydrographs. 

Initially, missForest imputes all missing values with the target 
hydrographs mean value and then goes through all hydrographs with 
missing values (starting from the one with the least gaps). Then, a RF is 
built to predict the missing values. Each succeeding iteration builds a 
better model as previously imputed values are used as predictors for the 
next iteration. The imputation procedure is repeated several times until 
a stop criterion, or the pre-defined number of iterations is met. 

In this study, the missForest was implemented using R version 4.2.0 
(R Core Team, 2022) and the missForest package version 1.5 (Stek-
hoven, 2013) which permits to define parameters that are related to RF 
(such as ntree – number of trees to grow in each forest with 100 as a 
default number; and mtry - the number of variables randomly selected at 
each node to set up the split with the square of the number of variables 

Fig. 1. Workflow to create gapless groundwater level (GWL) time series and 
evaluate imputation performance (RGP – random gap patterns, TGP – typical 
gap patterns). 
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as a default) and more specific missForest parameters (like maxiter– 
maximum number of iterations to be performed if stopping criteria is not 
yet met with a default value of 10). We tested multiple combinations of 
ntree (10 and 100) and maxiter (1 and 10) (see Table 1). To account for 
linear trends and seasons, new variables in addition to hydrographs 
were added (c.f. Evans et al., 2020) - day of the year, month and Unix 
time according to GWL observation date. The missForest imputation 
experiments were run on a different number of CPU cores by parallel-
izing on variables while preserving comparable computation times. 

2.4.2. The imputePCA algorithm 
The imputePCA algorithm is a statistical imputation method that 

imputes missing values by iteratively performing principal component 
analysis (PCA) on the data set. In this study variables are daily 
groundwater level time series including the gaps. The algorithm initially 
imputes missing observations with a mean value. Then PCA is carried 
out that finds the best approximation of the original hydrographs to 
reduce the initial number of dimensions which explain most of the 
variability within the data set. Next, a new prediction of the missing 
value is performed using the new dimensions and PCA analysis is run 
again. These steps are repeated until convergence, i.e. when the differ-
ence between two successive iterations is below a defined threshold or at 
a predefined number of iterations. Before imputation, the number of 
PCA dimensions must be estimated (Josse and Husson, 2016). Here, the 
missMDA R package was used to perform the imputePCA and 3 principal 
components were chosen for imputation based on the “estim_ncpPCA” 
output. The same additional variables (day of the year, month and Unix 
time) were added as in missForest setup (section 2.4.1.). 

2.4.3. Linear interpolation 
A commonly used linear interpolation method was applied to infill 

gaps in groundwater level times series. Linear interpolation imputed 
missing values by generating a straight line between two adjacent ob-
servations while missing values at the beginning or the end of a 
particular hydrograph were imputed by extrapolation of a constant 
value according to the first/last observation. 

2.4.4. Imputation procedure 
Each cluster representing TGP was used to introduce gaps in the 

original groundwater hydrographs. Then, missing values were imputed 
according to selected imputation methods. The missForest and impu-
tePCA methods were applied for each groundwater hydrograph and 
each cluster separately, thus resulting in a relatively large number of 

imputations. Linear interpolation, however, was performed for each 
cluster for all hydrographs at once. The introduction of TGP gaps was 
carried out for all hydrographs, except for the time series, on which the 
gap pattern was created (see Section 2.2.), because these time series 
already had gaps in the same locations and could not be used to evaluate 
imputation performance. Moreover, groundwater hydrographs were 
excluded with more than 50 % of missing values within the represented 
period of a particular cluster (TGP) to minimize the impacts of using too 
small data sets. 

2.5. Model performance metrics 

The performance of data imputation methods was evaluated by 
comparing the filled hydrographs with the observed data. This means 
that imputation was only evaluated for time series sections/values that 
originally did not contain gaps at the locations that were imputed. For 
evaluation Nash-Sutcliffe efficiency (NSE) and normalized root mean 
square error (NRMSE) were used. Metrics were calculated using the 
hydroGOF (Zambrano-Bigiarini, 2020) package in R. 

3. Results 

3.1. Selected groundwater level time series 

The number of active groundwater level monitoring stations in the 
study area varied substantially between countries. In Lithuania, 
automatic-level loggers were deployed already in 2005 (Arustiene, 
2011), while in Latvia (Retike et al., 2022) and Estonia the first auto-
matic daily observations can be dated back to 2010–2011 (Fig. 2). The 
number of available daily hydrographs for Lithuania remained relatively 
constant through the last two decades if compared to Latvia and Estonia 
where the changes were more dynamic (Fig. 2). The peaks can be 
explained by the deployment of new automatic level loggers, while the 
sudden drops in observations most probably were due to various errors 
(mainly logger malfunction) and consequent data pretreatment, as well 
the exclusion of wells from monitoring programmes (Retike et al., 
2022). It should be highlighted that abrupt drops at the end of the 
represented period (see grey shading in Fig. 2) are associated with data 
gathering processes for this study and do not reflect the actual changes 
in the monitoring programmes. 

We selected the period when daily hydrographs were available for all 
three countries simultaneously in a reasonable amount. The selected 
period spanned from 1st January 2011 to 31st May 2019 covering 3073 

Table 1 
Imputation experiment setups and imputation times. TGP-Typical gap patterns (2384 imputations); RGP-Random gap patterns (545 imputations).  

Model Model parameters Introduced 
gaps 

Total CPU time 
[Days] 

Average CPU time per imputation 
[minutes] 

Total CPU time 
[seconds] 

Number of CPUs 
used 

missForest maxiter = 1, ntree = 10 TGP  10.54  6.4 911,024 16 
missForest maxiter = 1, ntree =

100 
TGP  71.84  43.4 6,207,136 16 

missForest maxiter = 10, ntree =
10 

TGP  49.72  30.0 4,295,472 16 

missForest maxiter = 10, ntree =
100 

TGP  392.47  237.1 33,909,312 48 

missForest maxiter = 1, ntree = 10 RGP  0.47  1.2 40,752 16 
missForest maxiter = 1, ntree =

100 
RGP  3.72  9.8 321,440 16 

missForest maxiter = 10, ntree =
10 

RGP  2.53  6.7 218,912 32 

missForest maxiter = 10, ntree =
100 

RGP  22.57  59.6 1,950,112 32 

imputePCA ncp = 3 TGP  3.84  2.3 331,560 10 
imputePCA ncp = 3 RGP  0.098  0.3 8430 5 
linear 

interpolation 
– TGP  0.0003  0.0 22 1 

linear 
interpolation 

– RGP  0.0001  0.0 10 1  

J. Bikše et al.                                                                                                                                                                                                                                    



Journal of Hydrology 620 (2023) 129424

5

days (~8.4 years). Then the threshold of a minimum of 5.5 years of non- 
missing values was set for the selected period that resulted in 283 
hydrographs out of the initial 465 time series. This criterion implies that 
up to 34.5 % of the total length of time series were allowed to have 
missing values that could be either a continuous gap or a sum of several 
smaller gaps. Within the selected hydrographs consecutive lengths of 
missing values varied a lot – most hydrographs contained consecutive 
missing values with the maximum length up to about 100 days, while a 
significant part – 20 % of hydrographs had maximum consecutive 
missing values of more than 1 year length (Figure S1 in Supplements). 
However, the average lengths of consecutive gaps within groundwater 
hydrographs were 55.2 days and a median was 27.8 days. Only 29 of the 
selected daily hydrographs had no missing values. 

3.2. Introduction of artificial gaps 

3.2.1. Typical gap patterns (TGP) 
Eleven distinct groups of gaps in groundwater hydrographs were 

identified through cluster analysis of the binary missing value series in 

the data set (Fig. 3a). Then, the clustering results were generalized into 
TGP to be used for the simulation of artificial gaps in time series 
(Fig. 3b). After the generalization process, Cluster 1–10 (each formed by 
9 to 38 hydrographs, see Fig. 3a) had gaps, while cluster 11 was char-
acterized as gapless. More detailed characteristics of each TGP can be 
found in the Supplementary material (Table S1). 

3.2.2. Random gap patterns (RGP) 
The maximum cumulative length of gaps in the final data set (283 

hydrographs) reached 1033 days or 33.6 % of the total selected period, 
while on average hydrographs typically contained 14.1 % of missing 
values (median value 11.29 %). Therefore, RGP gaps were introduced 
only to the 109 hydrographs that form the gapless cluster 11 (Fig. 3) 
using five thresholds of missingness (10 %, 20 %, 30 %, 40 % and 50 %) 
based on the characteristics of the data set. 

Fig. 2. Changes in the number of daily hydrographs over time by countries (Data aggregated by months, only hydrograph sections having full month of daily 
observations shown). 

Fig. 3. Patterns of missing values by clusters: a) initial distribution of missing values (n – number of hydrographs in the cluster); b) typical gap patterns (TGP) used to 
introduce artificial missing values in groundwater hydrographs. The height of the bars does not represent cluster size. 
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3.3. Imputation performance assessment 

3.3.1. Overall imputation performance 
In general, the imputation of RGP performed better than the impu-

tation of TGP (Fig. 4). Metrics showed similarly high performance for 
both, linear interpolation and missForest algorithms when infilling RGP 
(median NRMSE 0.07 and 0.08 respectively, median NSE 0.99 for both). 
In contrast, the performance of the imputePCA algorithm was less ac-
curate and more dispersed (median NRMSE = 0.56, NSE = 0.69). The 
imputation of TGP was more challenging for all imputation algorithms 
and showed lower metric scores. The linear interpolation generally 
failed to impute missing values effectively (median NRMSE = 1.14, NSE 
= -0.31) and its performance sharply declined if compared to infilling 
RGP. On the contrary, the imputePCA algorithm demonstrated better 
performance compared to linear interpolation on TGP infilling (median 
NRMSE = 0.85, NSE = 0.27). 

On average, the missForest algorithm outperformed the linear 
interpolation and imputePCA algorithms and regarding TGP showed the 
most satisfactory infilling results (median NRMSE = 0.61, NSE = 0.63). 
However, a proportion of hydrographs infilled by all algorithms, 
including missForest, showed extremely poor performance when 
imputing TGP, reaching as low NSE values as − 1770, − 170 and − 14.5 
and as high NRMSE as 3.9, 13.1 and 41.9 for imputePCA, missForest and 
linear interpolation, respectively. 

3.3.2. Impact of individual gaps 
The imputation performance of models on infilling TGP is relatively 

consistent (Fig. 5). Overall, the missForest algorithm outperformed 
imputePCA and linear interpolation methods except for Cluster 2, where 
missForest and linear interpolation achieved similarly high imputation 

accuracy with median NRMSE below 0.28 and NSE above 0.92. In 
Cluster 2 there was less than 4.59 % of missingness and the gaps were 
short, 7.83 days on average and thus more like the results of RGP. 

It was observed that all methods performed poorly on infilling 
relatively long continuous gaps (2–2.5 years) located at the beginning of 
the hydrographs. For instance, in cluster 1 and 9, the missForest and 
imputePCA shows one of their worst results (median NRMSE greater 
than 0.99 for imputePCA and greater than 0.71 for missForest; median 
NSE for imputePCA less than 0.02 and missForest less than 0.49). The 
same low performance can be seen with linear interpolation, where gaps 
at the beginning or the end (Clusters 1, 6 and 9) are imputed with a 
constant first or last value in the hydrograph. In comparison, the accu-
racy of infilling similarly long contiguous gaps (2 years) not located at 
the ends of hydrographs (Cluster 3) was higher for missForest and 
imputePCA methods (median NRMSE for missForest 0.58, for impu-
tePCA 0.74, median NSE for missForest 0.66, for imputePCA 0.45), with 
significantly lower scores for linear interpolation (NSE = -0.05, NRMSE 
= 1.03). To sum up, the missForest algorithm performed well at infilling 
missing values of various complexity (short gaps, continuous gaps, and 
continuous gaps located in both ends of the time series). According to 
metrics the imputePCA often performed better than the linear interpo-
lation (e.g., in infilling continuous gaps), but the variability of results 
was similarly high for both methods. Interestingly, that imputePCA 
performed substantially worse than linear interpolation in an apparently 
easy task such as infilling short gaps in Cluster 2. 

3.3.3. Effect of missForest parameter setups 
The four different parameter setups of missForest imputation we 

tested, significantly affected the computational times (see Table 1), 
while the impacts on the imputation performance were negligible 

Fig. 4. Overall performance of models on imputing typical gap patterns (TGP) and random gap patterns (RGP) as indicated by (a) NSE and (b) NRMSE values 
(Outliers not shown, see Supplementary Figure S2 with outliers and Table S2 for descriptive values). 

J. Bikše et al.                                                                                                                                                                                                                                    



Journal of Hydrology 620 (2023) 129424

7

(Fig. 6). For example, TGP imputation of the computationally most 
demanding parameter setup (maxiter = 10, ntree = 100, the default 
settings of missForest) showed slightly improved performance compared 
to the weakest parameter setup (maxiter = 1, ntree = 10) (median NSE 
0.63 and 0.56; median NRMSE 0.63 and 0.67), however, the spent 
computational time differs 37-fold (Table 1). 

Reducing “ntree” from 100 to 10, decreased the required computa-
tional time 7 to 9-fold, while imputation performances are nearly the 

same (median NSE decrease: 0.06 and 0.003; median NRMSE rise: 0.05 
and 0.02 for TGP and RGP respectively). Similar results were observed 
when the default “maxiter” was reduced from 10 to 1. The computa-
tional time decreased by 5 to 6-fold, while the impacts on the model 
performance were negligible (median NSE decreased by 0.01 and 
NRMSE increased by 0.01 when imputing TGP, but almost no changes in 
performance were observed when imputing RGP). 

Fig. 5. The performance of models on infilling each gap cluster of the TGP as indicated by (a) NSE and (b) NRMSE values (Dashed horizontal lines indicate thresholds 
for NSE and NRMSE; Outliers not shown, see Supplementary Figure S3 with outliers and table S2 for descriptive values). 

Fig. 6. Effect of four different missForest parameter setups (maxiter – number of iterations; ntree – number of trees) on infilling TGP as indicated by (a) NSE and (b) 
NRMSE values (Outliers not shown, see Supplementary Figure S4 for outliers). 
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3.4. Imputation time analysis 

For linear interpolation, imputation was performed for all hydro-
graphs at once resulting in 10 iterations to impute all TGP (one for each 
TGP) and five iterations to impute the five RGP variants. The missForest 
and imputePCA methods required a single calculation for each TGP- 
hydrograph pair in a way that artificial missing values were intro-
duced only on the selected hydrograph. As a result, 2384 unique TGP- 
hydrograph combinations were individually processed and imputed. 
RGP imputation for the two methods was performed in the same 
manner, but only on 109 hydrographs that form Cluster 11 resulting in 
545 unique RGP-hydrograph combinations that were imputed for each 
model/experiment (Table 1). 

The missForest imputation experiments were performed by using 
parallel processing natively implemented in the “doParallel’’ package 
(parallelizing on variables). ImputePCA experiments were parallelized 
by each TGP (10 steps) or by each RGP instance (5 steps). All imputa-
tions were performed on a high-performance computing server equip-
ped with Intel Xeon Gold 5220R CPU. Imputation experiments were 
performed on a different number of CPUs, therefore computation times 
provided in Table 1 represent CPU time and not the actual time - i.e., the 
longest calculation with missForest (using parameters maxiter = 10 and 
ntree = 100) for TGP imputation (2384 individual imputations) took 
392.47 CPU days, but because of running on 48 parallel CPUs, the actual 
spent time was only 8.18 days, that translates to ~ 5 min per single 
imputation. 

Out of three imputation algorithms and tested experiments (Table 1), 
linear interpolation was the most rapid (10 to 22 s), followed by 
imputePCA (2.3 h for RGP imputation and 92.1 h for TGP imputation) 
and the missForest algorithm which had a wide range of computation 
times depending on the experimental setups (starting from 11.3 h for 
RGP imputation using simple model parameters, up to 392.47 days for 
TGP imputation using default model parameters). 

4. Discussion 

Despite the numerous techniques present on how to handle missing 
values (Junninen et al., 2004; Yadav and Roychoudhury, 2018), re-
searchers tend to assess imputation performance by introducing artifi-
cial gaps at random (Dwivedi et al., 2022; Gill et al., 2007; Stekhoven 
and Bühlmann, 2012) as it is straightforward, fast and does not demand 
evaluation of the missingness patterns in the data set. However, our data 
set confirms the observation made in previous studies that missingness 
in time series data sets is dominated by salient gap patterns with larger 

gaps instead of random short gaps (Dwivedi et al. 2022; Oikonomou 
et al., 2018; Retike et al., 2022). From 11 TGP characteristic for the 
Baltic groundwater level data set, only one could be attributed to the 
random-like gaps (Cluster 2 with 18 on average 7.8 days long gaps). The 
present study also confirms that random-like gap patterns require less 
complex imputation methods to fill. Accordingly, the imputation of 
hydrographs from Cluster 2 achieved similarly good performance with 
linear interpolation and the missForest method (Fig. 5). It is worth to 
highlight that groundwater level changes are often slow and consecutive 
changes between days can be small, thus it is easy to fill short gaps using 
the linear interpolation. Dwivedi et al. (2022) reported that even a 
simple interpolation method could accurately impute up to 90 % of 
missing data in a two-year long period if gaps are at random, whereas 
the imputation of continuous gaps is much more challenging. This is in 
line with our findings as the linear interpolation method failed to impute 
the rest of the TGP adequately. In conclusion, assessing imputation 
methods based on TGP improves our understanding of imputation 
method performance. 

However, model performance for TGP is not solely related to gap 
length. Fig. 7a shows a hydrograph with a long continuous gap (2.5 
years) located at the challenging position - the beginning of the hydro-
graph, and still showing good imputation performance. While another 
hydrograph with a relatively shorter gap (126 days) located in the 
middle of the hydrograph showed lower performance (see Fig. 7b). This 
could be due to the missingness of adequate (i.e., characteristic to the 
hydrograph) training data in a particular period since data-driven 
models learn the relationships solely from the input data Gill et al. 
(2007). However, at times the performance of models was unexpectedly 
poor even when infilling previously seen anomalies (such as in Fig. 7b) 
and the true reason behind inaccurate infilling remains unclear. It 
should be remembered that the severity of gaps is a combination of how 
much data is missing, the mechanisms of missingness and the patterns of 
missing values (Emmanuel et al., 2021; Kang, 2013) not only the gap 
length itself. 

When investigating method performance in individual time series, 
methods generally fail around gaps that contain extremes, as previously 
seen by e.g., Dwivedi et al. (2022). Fig. 8 illustrates examples from 
Cluster 3, which contains a single continuous gap of 2 years from early 
2017 to late 2018. The extremes are associated with a period of 
exceptionally severe drought episodes in Europe (Hänsel et al., 2022; 
Moravec et al., 2021; Rakovec et al., 2022), causing extreme ground-
water droughts spanning to regional levels (Brakkee et al., 2022; 
Wunsch et al., 2022). While the performance of missForest and impu-
tePCA was still satisfactory near peaks (Fig. 8a), the performance of 

Fig. 7. Imputed (red shaded area) hydrographs in (a) TGP Cluster 9 and (b) TGP cluster 10, showing that the length of a continuous gap is a poor predictor for 
imputation performance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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models declined in case of more severe (often previously unobserved) 
extremes (Fig. 8b), probably as a result of untypical groundwater levels 
compared to the rest of the data set (Dwivedi et al., 2022). Therefore, we 
advise taking caution when imputing periods of extremes, indepen-
dently of the imputation method. 

In this study, the data set used for imputation did not include pre- 
selection constraints regarding anthropogenic influence on ground-
water levels. However, intensive and continuous groundwater abstrac-
tion can cause deviations from expected groundwater level patterns 
affecting time series behaviour, such as trends or shifts (Brakkee et al., 
2022; Sorensen et al., 2021). The groundwater hydrograph in Fig. 9 is 
located in the vicinity of Liepāja (Latvia) historically known to be 
affected by groundwater over-abstraction (Bikše and Retike, 2018; 
Pulido-Velazquez et al., 2022) and illustrates the imputation perfor-
mance in the presence of trends. It can be observed that linear inter-
polation can occasionally outperform more advanced imputation 
techniques and accurately impute longer gaps (maximum being ~ 1 
year) in the hydrograph section with a rather stable trend (Fig. 9a). At 
the same time, all three methods failed to handle shorter TGP at the end 
of the same hydrograph (Fig. 9b), probably due to sudden changes in the 
time series pattern (Dwivedi et al., 2022). 

The evaluation of abstraction effects on time series is often limited by 

the absence of actual water usage data (Wendt et al., 2020), including 
unregistered abstractions (Arriagada et al. 2021). Our study shows that 
poor imputation performance can be spatially linked to some docu-
mented cases of anthropogenically altered groundwater levels in Baltic 
states (Kitterød et al., 2022; Klimas et al., 2018) (Fig. 10). Most negative 
NSE values are found near north-eastern Estonia, where extensive oil 
shale mining has significantly changed the groundwater levels (Ter-
asmaa et al., 2020). Poor model performance can be observed for 
hydrographs near all three capital cities of the Baltic states (Tallinn, Riga 
and Vilnius) where groundwater is used as water supply (Kitterød et al. 
2022; Klimas et al. 2018; Marandi and Karro 2008; Vallner and Porman 
2016). 

5. Conclusions 

The present study demonstrates a new typical gap pattern (TGP) 
approach for assessing the performance of automated imputation 
methods considering the complexity of gap patterns in a data set, thus 
aiding the selection of the most appropriate imputation method. Most 
studies evaluating the infilling performance of various methods use 
random gaps, however, gaps found in groundwater level time series 
occur rarely at random. Therefore, an approach mimicking TGP found in 

Fig. 8. Imputed (red shaded area) hydrographs in TGP Cluster 3 showing relatively good (a) and bad (b) imputation performance most likely caused by previously 
seen (a) or unseen (b) anomalies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Imputed (red shaded area) gaps in TGP Cluster 7 (a) and Cluster 6 (b) in the same hydrograph, showing contrasting imputation performance due to 
anthropogenic impact and location of the gap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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daily groundwater hydrographs was developed. This approach was used 
to introduce artificial gaps and perform a more realistic in-depth eval-
uation of imputation method performance on patchy groundwater level 
data sets. Further, three data imputation methods (missForest, impu-
tePCA and linear interpolation) were compared to infill introduced TGP 
and commonly applied random gaps on a set of regional scale ground-
water hydrographs of the Baltic states. Overall, the missForest algorithm 
significantly outperformed both linear interpolation and imputePCA 
with TGP when infilling contiguous gaps (up to 2.5 years), often located 
near extremes and even at the beginning or end of the time series. 
However, with short, random gaps (7.8 days on average) the linear 
interpolation had as high imputation skill as missForest. The missForest 
default setup was the most time demanding and only slightly improved 
the performance, thus, could be recommended for single imputation 
needs. However, for TGP or similar multiple-imputation approaches, 

weaker parameter setups can be justified. We identified that in some 
cases low infilling performance arose due to previously unseen extremes 
such as the severe drought episode observed across Europe in 2018. 
Also, poor imputation performance could be attributed to known loca-
tions of intensive groundwater abstractions like the capital cities of the 
Baltic states – Tallinn, Riga and Vilnius. The proposed TGP approach 
affords imputation performance assessments higher granularity by sys-
tematically considering complex gap patterns and can be useful for large 
time series data sets beyond groundwater levels. 
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