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Introduction

Two alternative (postprocessing) methods are available to
forecast a variable of interest (e.g. a weather quantity) over
time.

Properties of forecast errors of both methods can be
compared after fitting models on training data and
predicting on test data.

Question: Observed difference simply due to random
chance/noise in training data, or statistically significant?

⇝ Apply formal testing procedures
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Preliminaries and Notation
Given: Observations yt and forecasts ŷit from
(postprocessing) model i = 1, 2, at time points t = 1, . . . ,T .

⇝ Resulting forecast errors of model i : eit = ŷit − yt .

In many cases loss associated with forecast i depends on
forecast and observation (only) through forecast error,
that is we can conveniently write

L(yt , ŷit) = g(ŷit − yt) = g(eit).

General cases where loss does not collapse to g(eit) are
denoted by L(yt , ŷit) = g(ŷit , yt).

Loss differential between the two forecast models i = 1, 2
(resulting e.g. from two postprocessing models)

dt = g(e1t)− g(e2t).
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Preliminaries and Notation

The two forecasts have equal predictive accuracy if and
only if the loss differential has zero expectation for all t .

Thus, we are interested in testing the Null Hypothesis

H0 : E(dt) = 0 ⇔ H0 : E(g(e1t)) = E(g(e2t)) ∀t

vs. the Alternative Hypothesis

H1 : E(dt) ̸= 0

⇝ Null Hypothesis of equal accuracy equivalent to the Null
Hypothesis that population mean of loss differential
series is equal to 0.
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Morgan Granger Newbold (MGN, 1977) Test
Assumptions:

• Loss function is quadratic
• Forecast errors are (a) zero mean, (b) Gaussian, (c) serially

uncorrelated (no autocorrelation)
• Additional assumption of no contemporaneous correlation of

the forecast errors is supposed to be relaxed.

Approach: Apply orthogonalizing transformation to
forecast errors

xt = e1t + e2t

yt = e1t − e2t .

Given above assumptions the Null Hypothesis of equal
forecast accuracy is equivalent to Null hypothesis of zero
correlation between x and y , that is H0 : ρxy = 0 vs.
H1 : ρxy ̸= 0, where ρxy = Cor(xt , yt) (correlation test).
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Morgan Granger Newbold (MGN, 1977) Test

That is, with ρ̂xy denoting the empirical Bravais-Pearson
correlation coefficient the test statistic can be computed as
follows:

MGN =
ρ̂xy√
1−ρ̂2

xy
T−1

.

Under H0 the test statistic follows a Student’s t distribution
with T − 1 degrees of freedom

Drawback: Application limited to one-step (h = 1) ahead
predictions and squared error loss.
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Diebold Mariano Test (DM, 1995)
Applicable to

• any loss function, that is loss can be non-quadratic,
non-symmetric, non-continuous,

• h (≥ 1) step ahead forecasts,
• forecast errors that are non-Gaussian, nonzero-mean, serially

correlated, contemporaneously correlated
Let d̄ = 1

T

∑T
t=1 dt be the sample mean of dt .

DM =
√

T
d√√√√ h−1∑

τ=−(h−1)

γ̂d(τ)

,

where the truncation lag h − 1 refers to an h step ahead
forecast, and

γ̂d (τ) =
1

T

T∑
t=|τ|+1

(d(t) − d)(d(t − |τ |) − d)

are the empirical autocovariances.
Under H0, test statistic approximates a standard normal distr.
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Modified Diebold Mariano Test (HLN, 1997)

Simulations in Diebold and Mariano (1995) show: normal
distribution can be poor approximation of the DM test’s
finite-sample distribution under H0.

Results indicate DM test tends to be oversized, depending
on degree of autocorrelation among forecast errors and
sample size T .

Harvey, Leybourne and Newbold (1997) suggest that
improved small-sample properties can be obtained by:

• bias correcting the DM test statistic to have approx. unbiased
estimate of variance of loss differential, and

• comparing the corrected statistic with Student-t distribution
with (T − 1) degrees of freedom, rather than standard normal.
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Modified Diebold Mariano Test (HLN, 1997)

Resulting modified statistic:

DMHLN =

(
T + 1 − 2h + T−1h(h − 1)

T

) 1
2

DM,

where DM denotes the original statistic, h denotes the number
of lags, and T is the number of time points in the sample.

Additional requirement: Loss differential dt of h-step ahead
forecasts is assumed to have zero autocorrelations at lag h
and beyond
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Aim of this Study

DM test frequently used to investigate whether difference in
performance of two postprocessing models is significant.

However, up to now no systematic investigation of
behaviour of test in context of postprocessing.

This study (and future extensions) is interested in the
following aspects:

• use of different loss functions (CRPS, MSE, MAE,...)
• use of different forecast/postprocessing models
• application to different forecasts horizons
• application of different versions/types of tests
• assumptions of the tests: approx. fulfilled on real data? if

not, tests robust against it?

Some of the aspects were analysed in the current study, a few
exemplary results are presented here.
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2 Application to Temperature Data
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Data Overview
ECMWF temperature forecasts and observations over
Europe, at 36 stations

Time period of 12 years, from 2002-01-01 to 2014-03-20

Last 1000 days fixed as test/validation data, consists of dates
between 2011-06-25 and 2014-03-20

Forecast ensemble with 52 members, 50 exchangeable
members, 1 control forecast, 1 high-resolution forecast

Investigation of 24-h, 48-h, 120-h, and 240-h ahead
forecasts, initialized 12 UTC (13 Uhr (1 pm), 14 Uhr (2 pm)
during daylight savings time)

More detailed analysis for 8 stations (having few NA):
Dublin, Frankfurt, Vienna, Prague east, Prague south,
Bratislava, Sofia, Vilnius.
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Set-up of Analysis

Benchmark forecast model is the raw ensemble
• computation of MAE and MSE (raw ensemble mean) and

CRPS of raw ensemble for the 1000 test dates
• results in time series of scores s1(t), t = 1, . . . , 1000.

EMOS fitted with rolling training period on training data
• computation of scores MAE, MSE (EMOS predicitve mean)

and CRPS for the 1000 test dates
• results in time series of scores s2(t), t = 1, . . . , 1000.

Tests applied to dt = s1(t)− s2(t), thus testing
H0 : dt = Scores Raw Ens - Score Emos equal to 0 on
average.
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p-values CRPS
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Checking Assumptions of Tests

Forecast errors normal with zero mean (MGN test)
• EMOS: no obvious violation
• Raw ensemble: tendency for a slight location shift to the right,

otherwise roughly fine
• For both methods no substantial differences between forecast

horizons, however, differences occur between stations

Forecast errors show no autocorrelation (MGN test)
• EMOS: Autocorrelations visible in ACF (at most) up to lag

h − 1 for h-step ahead forecasts
• Raw ensemble: Often stronger autocorrelations visible, even

for lags (way) beyond h − 1
• Ljung-Box test: confirms significant autocorrelation for all

stations and forecast horizons
• Violation of assumption seems to have little effect on

behaviour of MGN test.
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Checking Assumptions of Tests

Autocorrelation of dt zero beyond lag h − 1 for h-step
ahead forecasts (modified DM)

• In most cases ACF of dt shows no substantial autocorrelation
beyond lag h − 1, across all considered scores and stations

• In the few cases where autocorrelation beyond lag h − 1 is
present, decision of modified DM test nonetheless consistent
with decisions of other tests not making this assumption

dt has symmetric distribution and zero mean (Wilcoxon)
• Seems roughly fulfilled for all scores and forecast horizons, no

instances with drastic departures from assumptions
• MSE: tendency of heavy left tail, gets more pronounced for

higher forecast horizons (and at some stations specifically)
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3 Simulation Study
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Simulated Data
DM (1991, 1995) and HLN (1997) conducted simulations with
respect to sample size T , distribution and correlation of
forecast errors.
Here, simulation studies designed for postprocessing setting.
Simulated data consists of one observation and 50 ensemble
members for each date, ensemble forecasts understood as
one-step ahead forecasts.
Observations drawn from a normal distribution with
parameters µ = 0 and σ2 = ρ1:

y ∼ N(0, ρ1)

Ensemble members drawn from the normal distribution:

Xi ∼ N(ϵ, ρ2)

For the parameters, let ϵ ∈ {0, 0.1}, ρ1 ∈ {0.1, 0.25}, and
ρ2 ∈ {0.177, 0.3} with the restriction ρ1 ̸= ρ2.
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Simulated Data
T = 2000 observations drawn from a normal distribution
with predefined parameters.

For each of the m = 50 ensemble members, T = 2000
forecasts are drawn from a normal distribution with some
parameters changed compared to the observation distribution.

First 1500 instances used as training data, last 500 instances
as test data

Compute raw ensemble mean (Forecast Model 1), fit EMOS
model based on simulated training data (Forecast Model 2).

Again s1(t) series of scores for raw ensemble, and s2(t)
series of scores for EMOS model, and tests applied to
dt = s1(t)− s2(t).

Data simulation, fitting of forecast models on training and
prediction on test data repeated 100 times.
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Simulation Settings
We consider 3 different parameter combinations
corresponding to 3 scenarios:

1. Ensemble exhibits no bias, no or little improvement
expected by postprocessing.
Achieved with setting ϵ = 0, ρ1 = 0.1, and ρ2 = 0.177:

y ∼ N(0, 0.1) and Xi ∼ N(0, 0.177)

2. Ensemble exhibits bias, improvement by postprocessing
expected.
Achieved by keeping distribution for simulated observations,
but draw ensemble forecasts from normal distribution with
parameters ϵ = 0.1 and ρ2 = 0.177.

3. Ensemble exhibits bias and dispersion errors,
improvement by postprocessing expected.
Observations are again distributed as before, ensemble
generated with a bias and a larger spread by setting
parameters of the normal distribution to ϵ = 0.1 and ρ2 = 0.3.
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p-values of MSE Setting 1, 2, 3
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p-values of CRPS Setting 1, 2, 3
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4 Outlook
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Future Plans

Investigation for other weather variables
• assumptions of tests fulfilled as well?
• similar performance of tests?
• similar behaviour with respect to applied score and forecast

horizon?

Extension of simulation study
• More systematic study of power and size of test, in conjunction

with sample size
• Simulating more/different aspects of miss-specification in

postprocessing setting, of violation of assumptions for the tests
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