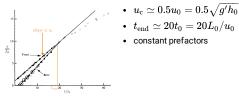
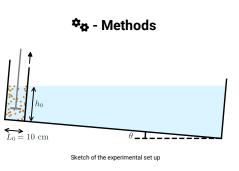
Slumping regime in lock-release turbidity currents


Introduction

Snow avalanche, Zinal, Switzerland Dust storm, Phoenix, USA @Alan Stark @Zacharie Grossen

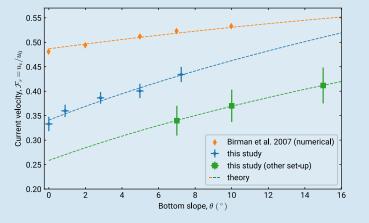

? natural hazards \rightarrow reliable predictive models?

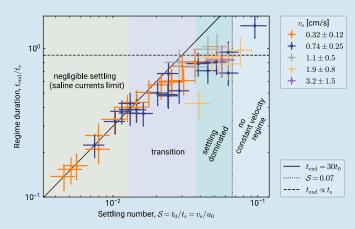
• saline currents, horizontal bottom:

Rottman et al. 1983

dynamics of particle-ladden currents on slopes?

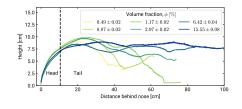
- Systematic parameter space exploration:
 - 2 different set ups: $heta \in [0^\circ, 15^\circ]$, $h_0 \in 20, 30$ cm
 - 5 different particle diameters + saline water
 - particle volume fraction $\phi \in [0.5, 15]~\%$



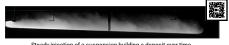

Slumping of a suspension of silica sand ($d \sim 180~\mu{
m m}$).

Bottom slope and particle settling matter for turbidity current slumping dynamics!

Bottom slope increases velocity


Settling decreases regime

duration


🕊 - Results

- Existence of a constant-velocity regime on a sloping bottom → slope-induced acceleration occurs later (Birman et al. 2007)
- Bottom slope increases this velocity
- Settling decreases the constant-velocity regime duration
- Current head shape ($\sim L_0$ behind nose) independant of $\phi, v_{\rm s}$ and θ

- Discussion/Perspectives

- Origin of the influence of θ on $\mathcal{F}r$? (early times)
- How to include this on depth-averaged models ? (to be tested)
- Influence of lock aspect-ratio (h_0/L_0) on velocity ?
- What about steady-influx turbidity currents on slopes?

Steady injection of a suspension building a deposit over time

^{AB}∕ - Definitions

- slumping regime: first, constant-velocity, phase of current propagation (see introduction)
- + $\,u_0=\sqrt{(\delta
 ho/
 ho_{
 m f})\phi gh_0}$, characteristic slumping velocity
- + $\,\delta
 ho=
 ho_{
 m p}ho_{
 m f}$, excess particle density
- + $t_0 = L_0/u_0$, characteristic slumping time
- $v_{\rm s}$, particle settling velocity
- + $t_{
 m s}=h_0/v_{
 m s}$, characteristic settling time

C. Gadal, M. Mercier and L. Lacaze. Institut de Mécanique des Fluides de Toulouse (IMFT), France cyril.gadal@imft.fr