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Key points 

• Detailed survey data allows for the update and calibration of rarely estimated empirical 

vulnerability curves for buildings.  

• Flood damage mitigation measures have the potential to reduce flood damage to both 

residential buildings and household contents by half.  

• Updated input for flood risk models in the form of depth-damage functions that can be 

adjusted for flood damage mitigation measures.  

 

Abstract 

Flood events are expected to increase in their frequency and severity, which results in higher 

flood risk without additional adaptation measures. The information gained from flood risk 

models is essential in effective disaster risk management. However, vulnerability estimations 

are often a large driver of uncertainty and flood damage is rarely estimated due to a lack of 

empirical damage data from flood events. This study uses a unique dataset with experienced 

damages and the implementation of flood damage mitigation (FDM) measures on the household 

level, collected after the flood event in the Netherlands in 2021. Flood damage models that 

control for several hazard, exposure and vulnerability indicators are estimated and allow for an 

additional input in flood risk models. Previous estimates of the effectiveness of FDM measures 

are prone to a selection bias, as households that do, and do not implement FDM measures 

systematically differ in their risk profiles. By using an Instrumental Variable (IV)-estimation, 

this study overcomes this selection bias and finds significant reductions in flood damage due to 

FDM measures. These reductions can be incorporated in multivariate flood vulnerability 

estimations, which indicate that FDM measures significantly reduce flood damage. 

Highlighting the relevance of information provision on both of these FDM categories and early 

warning systems for effective flood risk management.  

 

Index terms: 1807, 1821, 1986, 4330, 4336 
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1. Introduction 

Natural disasters caused approximately US$280 billion worth of losses in 2021, of which flood 

events accounted for 40% (Munich Re, 2022). In a changing climate, it is likely that the 

frequency and intensity of flooding increases, which results in higher flood risk without 

additional adaptation measures (IPCC, 2021). The assessment of potential flood damage and 

the effectiveness of adaptation measures is key information for flood risk management 

decisions (Huizinga et al., 2017). Flood damage is a commonly used measure of flood risk and 

often assessed by flood risk models that define risk as a function of hazard, exposure and 

vulnerability (Botzen et al., 2019; Kron, 2005). One of the drivers of uncertainty of estimated 

flood damage in these models is the input of vulnerability data (De Moel et al., 2012; Aerts et 

al., 2014), where exposure is also found to influence uncertainty (Sieg & Thieken, 2022). 

Vulnerability in flood risk models can be defined through depth-damage curves that denote a 

simple bivariate relationship between inundation depth and damage (De Moel et al., 2012). 

However, there is often a wide variation in flood risk, and flood damage cannot be fully 

explained by this depth-damage relationship (e.g., Merz et al., 2004; Thieken et al., 2005).  

Moving beyond bivariate depth-damage curves, the inclusion of additional hazard indicators 

other than inundation depth (e.g., flow velocity, inundation duration) and socioeconomic factors 

make vulnerability estimates and flood risk models more reliable (Zhai et al., 2005). The studies 

that estimate multivariate flood damage models, are often limited in the inclusion of other 

hazard and exposure variables (e.g., Zhai et al., 2005; Poussin et al., 2015, Van Ootegem et al., 

2015; Wagenaar et al., 2017). Hazard indicators, such as flow velocity and inundation duration, 

are often excluded from multivariate regression models, as detailed data from flood events are 

scarce (e.g., Zhai et al., 2005, Poussin et al., 2015; Van Ootegem et al., 2015). Exposure is 

frequently left out of depth-damage curves, as the value of damaged properties is often 

unknown (e.g., Merz et al., 2004, Hudson et al., 2014; Van Ootegem et al., 2015; Sultana et al., 

2018). Exposure can be controlled for by using damage ratios instead of absolute damages in 

calibrating flood damage models. These damage ratios denote flood damage relative to actual 

property value, and their use in flood damage models facilitates their applicability in other 

regions with varying property values. As detailed empirical data from flood events is scarce, 

few studies have calibrated depth-damage models (e.g., Merz et al., 2004, 2013; Thieken et al., 

2005, Sultana et al., 2018). Depth-damage curves are even less frequently calibrated in the 

Netherlands, where current estimates are based on flood damage records from the coastal flood 

of 1953 (Slager et al., 2013), A limitation of these flood vulnerability estimates is that they 

generally have limited transferability between different flood types (Wagenaar et al., 2018). 

Nevertheless, these models are still used to inform optimal safety standards for dikes (Kind, 

2014), which makes additional empirical estimates of these curves essential.   

An important expansion of multivariate flood damage models is the inclusion of flood damage 

mitigation (FDM) measures. These measures can be undertaken at the building level by 

households to reduce flood risk. It is important to evaluate the effectiveness of such measures, 

as they function as input in flood risk models, which helps guiding both households and policy 

makers in their flood risk management. Studies that do estimate the effectiveness of FDM 

measures frequently use a simple difference-in-means test to compare flood damage between 

the groups that do, and do not, implement these measures (e.g., Smith, 1981; Thieken et al., 

2005, Kreibich et al., 2005, Thieken & Kreibich, 2009). However, such a method does not 

account for other factors than FDM that influence flood risk. Some studies also use multiple 

regression analysis and machine learning to assess flood damage (e.g., Van Ootegem et al., 

2015; Wagenaar et al., 2018), and up to our knowledge only two others used these approaches 

for evaluating the effectiveness of FDM measures (Merz et al., 2013; Poussin et al., 2015). 
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Again, most previous literature on the effectiveness of FDM measures is based in Germany, 

with the exception of Poussin et al. (2015) who use French data, Van Ootegem et al. (2015) 

who use data from Flanders, Belgium and Wagenaar et al. (2017) who use Dutch data from the 

1993 and 1995 Meuse floods, but did not evaluate the effectiveness of FDM measures.  

However, these aforementioned studies on the effectiveness of FDM measures could be prone 

to a selection bias, as described by Hudson et al. (2014). This means that it is likely that both 

flood damage and the implementation of FDM measures are driven by individual 

characteristics, such as perceived flood risk prior to the flood event that relates to their actual 

flood risk profile. The reason is that households who face higher flood risk are more likely to 

take FDM measures before a flood event (Noll et al., 2022), which results in treatment (with 

FDM) and control (without FDM) groups that systematically differ in their risk profiles. In 

other words, it is likely that characteristics of households with FDM measures result in higher 

flood damage compared to households without these measures. Higher flood risk for the group 

with FDM measures results in an underestimation of the damage reduction when this selection 

bias is not controlled for in the analysis. Figure 1 visualizes the selection bias.  

 

Figure 1. Selection bias that results in an underestimation of the true effect of FDM measures. 
Note: The building closest to the river faces higher flood risk (€120 vs. €100 in the top hypothetical situation without FDM 

measures) and is, therefore, more likely to take FDM measures (as shown in the actual situation below). However, we only 

observe the actual situation below where flood damage has occurred that implies an incorrect damage reduction of €10 (€100 

vs. €90). The true effect of FDM measures is the difference between the counterfactual (hypothetical) situation without FDM 

measures (€120) and the observed situation (€90) with FDM measures: the damage reduction of FDM is €30. The buildings on 

the right are, therefore, not representative as control group, which results in an underestimation of the true effect of FDM 

measures.   

Hudson et al. (2014) and Sairam et al. (2019) attempted to overcome this selection bias by using 

propensity score matching (PSM). In PSM each unit in the treatment group is matched with at 

least one member of the control group with a similar propensity score. This approach helps 

overcoming the selection bias, as the compared groups are similar based on their observable 

characteristics. However, PSM does not allow to estimate the separate effect of all confounding 

variables. As a consequence, only damage reductions are found, while these effects are not 
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related to other indicators that explain flood damage, such as inundation depth or economic 

exposure. Moreover, flood exposure is excluded in both Hudson et al. (2014) and Sairam et al. 

(2019), as both studies only analyse absolute flood damages, making these results more difficult 

to implement in flood risk models.  

The main objective of this study is to estimate flood damage vulnerability curves that account 

for the influence of FDM measures. A secondary aim is to illustrate how these curves and 

damage reduction estimates can be applied in flood risk models, to allow for a broad 

applicability in various case study areas by other researchers. The contribution of this study to 

the existing literature is that we overcome the selection bias present in previous estimates of the 

effectiveness of FDM measures. This is done by introducing an econometric Instrumental 

Variable (IV)-regression approach (Angrist et al., 1996) to this literature on empirical flood 

damage assessments. Moreover, we express the effectiveness of these measures in damage 

ratios instead of absolute damage to control for exposure. This enables a wider applicability of 

our estimates to other contexts. Our study makes use of unique survey data on experienced 

flood damages during a recent flood event in the Netherlands in 2021, and various FDM 

measures in place at the building level. Thereby, we add to the scarce empirical estimates of 

determinants of flood damage in general, and FDM measures as explanatory variables in 

particular. 

The remainder of this paper is structured as follows. Section 2 describes the case study and the 

data that has been collected with the survey. Section 3 outlines the statistical methods. Section 

4 presents the results for flood damages to residential buildings and home contents. Section 5 

discusses the predictive power of our models, the findings in relation to the existing literature, 

and the broader applicability of our estimates in flood risk models. Section 6 concludes and 

gives recommendations for policy makers and future research. 

 

2. Data 

2.1. Case study area  

In July 2021, parts of Belgium, Germany and the Netherlands experienced severe precipitation 

and flooding, which caused fatalities, health problems and large financial damage. The peak 

discharge was the highest ever measured at several gauging stations along the Meuse and its 

tributaries. Discharge return periods along the Meuse reached 200 years and even 100 to 1000 

years along the rivers Geul, Geleenbeek and Roer (Expertise Netwerk Waterveiligheid (ENW), 

2021). The area of interest in this study is the part of the Netherlands that was affected by this 

flood event. It is estimated that approximately 2500 households and 600 firms have experienced 

flood damage and almost 50,000 people have been evacuated in the Netherlands alone (ENW, 

2021). Flood damage to households can be covered by either the homeowner’s insurance or 

home contents insurance, depending on the type of insurance contract. In 2018, following the 

advice of the Dutch Association of Insurers (2021), most national insurers included 

compensation for local flooding in their homeowner’s and household contents insurance 

policies. This compensation applies to damage resulting from flooding in regional waterways, 

including tributaries of the Geul, Geleenbeek and Roer, but not to main waterways (e.g., 

Meuse). Almost all households in the Netherlands are now insured for flooding from regional 

waterways (Dutch Association of Insurers, 2021). Dutch insurers have received approximately 

25,000 damage claims, with the total insured damage estimate between €160 and €250 million 

(Dutch Association of Insurers, 2021). Since not all flood damage is insured, ENW (2021) 

estimated that total damage was between €350 and €600 million. Although it is likely that 
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economic exposure has increased since the 1993 and 1995 flood events of the Meuse, flood 

losses are significantly higher with respectively €201 million and €126 million (converted to 

euros and corrected for inflation) of economic damage (ENW, 2021). 

 

2.2. Survey 

The purpose of the survey is to collect information on individual flood damage amounts and its 

determinants that are unknown in the aggregate damage estimates. The questionnaires were 

distributed in December 2021. Letters by postal mail were sent to 10,143 household addresses 

with a request to complete the online survey. Half of these addresses were located in the flooded 

area. This flood area was determined by using helicopter images and flood simulation models 

for the Meuse and its tributaries (Geul, Roer and Geleenbeek). The other half was randomly 

sampled from the households located in areas in which an evacuation order was issued during 

the flood event. It is useful to sample these latter areas, as some flood impacts may have 

occurred at these locations due to potential inaccuracies in the initially defined flood extents. 

Households who did not respond to the survey received a reminder in February 2022. 1509 

(14.9%) households responded to the survey. 40% of all households are located near the Meuse 

river and 20% along the Geul river. For about a third of the respondents, the geographical 

location is unknown, as respondents were given the option to refuse to share their home 

location. The remainder is located along the Geleenbeek or Roer. One third of all households 

in the survey experienced water intrusion. Data on flood damage as well as several hazard, 

exposure and vulnerability characteristics were collected, as explained in more detail below.  

 

2.3. Damage ratios 

When a property has a higher value, potential damage is larger as well. For this reason, we 

control for economic exposure by using damage ratios for both building structure and household 

contents as dependent variables of interest in this study. These are ratios of the absolute damage 

to the building and household contents compared to their objectively estimated replacement 

value, as is common practice to correct for exposure in flood risk models (Merz et al., 2010). 

Estimated damage ratios for both structure and household contents larger than 1 are capped at 

1, which implies total destruction of the building or contents. We use estimates of the objective 

building and content values instead of estimates of these values made by individuals, as 

individuals may assess these values with errors. Moreover, market values estimated by 

individuals may not well reflect reconstruction values. Reasons for this difference are that home 

values may have decreased due to the flood event or market values are very location dependent. 

For example, homes in attractive cities sell at higher prices than in more remote areas whilst 

reconstruction costs may be very similar.  

For the objective building value, two contractors are contacted to give an estimation of the 

rebuilding value, which gives a representation of costs faced by the homeowner or insurer. The 

first approach, proposed by iTX Bouwconsult (2022) allows for more differentiation between 

building types, as building values are determined based on building type, the number of floors, 

roof type and the presence of a garage (e.g., buildings with multiple floors have a higher 

reconstruction value compared to single-floor buildings). These reconstruction values range 

between €1,610/m2 and €2,911/m2  However, these characteristics are not known for the entire 

database, as not all respondents answered these questions. For this reason the estimates for the 

known values are compared with the more homogeneous approach of BMVV (2022), that 
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determines reconstruction values only based on building area (€1,806/m2). A Two-sample t-test 

has shown that the mean reconstruction values of both approaches do not significantly differ 

for the known values. For this reason, the BMVV approach is used, as it requires fewer 

restrictive assumptions.  

The replacement value for household contents has been determined using the same approach as 

insurance companies commonly apply in the Netherlands (e.g., Dutch Association of Insurers, 

2023; Independer, 2023). It is assumed that a household owns less than €12,000 worth of audio 

and computer equipment, less than €6,000 worth of jewelry and less than €15,000 of remarkable 

possessions. This approach is based on a point system, where points are attributed to household 

contents based on the respondent’s age, dwelling size, household income, homeownership and 

home living area. One point equals a value of €1,094, where mean replacement value for 

household contents in our sample is €78,787. This mean value is substantially higher than the 

mean value of €45,000 in the Netherlands (Dutch Consumer Association, 2023), which can be 

attributed to the fact that we use replacement values instead of depreciated values for household 

contents. Moreover, more points are attributed to homeowners and older people, groups that 

have a higher representation in our sample.   

 

2.4. Explanatory variables in the risk framework 

Flood risk, and thus flood damage, can be expressed as a function of hazard, exposure and 

vulnerability (Kron, 2005; Koks et al., 2015). For this reason, the variables used to explain flood 

damage in this study all fall within these three categories. Table 1 gives an overview of the 

explanatory variables included in this study.  

First, hazard denotes the severity and probability of a flood event (Kron, 2005). We capture 

hazard characteristics by including inundation depth, water rise rate, water withdrawal rate and 

flow velocity. We define inundation depth as the water level at the ground floor of the building 

to compose depth-damage functions. The rate of water rise is determined by the time it takes 

for water to enter a building and reach its maximum level. Similarly, the rate of water 

withdrawal refers to the period between water entering and leaving the building. However, 

estimating these rates can be challenging for individuals during a flood, particularly when they 

evacuated during the event. Therefore, respondents were asked to provide estimates for these 

periods using categorical time steps. While this approach may enable more respondents to 

answer the question, it may result in less reliable estimates. To estimate flow velocity, we 

adopted the reference categories used in previous studies by Thieken et al. (2005) and Merz et 

al. (2013). Although this approach relies on the respondent’s perception of an average person 

and is not entirely precise, we believe it provides more dependable results than asking for flow 

velocity in m3/s, which can be difficult for individuals to assess based on their own experiences. 

Our flow velocity indicator in Table 1 may reflect inundation depth as well, but this does not 

correspond to inundation depth at the ground floor. While water levels on the street were 

generally below 1.5 meters, water levels in buildings were influenced by their elevation relative 

to the street level (ENW, 2021). As a result, the indicator that captures velocity at the street 

does not correspond to inundation depth. The variable on prior flood experience will be 

discussed in more detail in Section 3.1 and 3.2.  

Next, we include economic exposure in the flood damage model, as objects with higher 

economic value are likely to incur higher economic damage (Kron, 2005). Exposure is primarily 

accounted for by expressing flood damage in terms of damage ratio rather than absolute values. 

Moreover, we include dwelling size and homeownership, as these variables tend to be 
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associated with higher building and content values (Drakes et al., 2019). Moreover, the Dutch 

flood event was characterized by heterogeneous impacts along the Geul river relative to the 

Meuse. To address this, we introduce a dummy variable for the Geul river as the most impacted 

area, which is compared to all other less disrupted areas. 

 

Table 1 

Overview of the included explanatory variables in this study. Standard deviations in 

parentheses (N=312). 

Variable Description Mean 

Hazard   

Inundation depth Inundation depth at the ground floor in centimetres 50.97 (62.55) 

Water rise rate Hours until the water has reached its highest level in the building 6.76 (10.01) 

Water withdrawal rate Hours until the water has left the building 22.42 (6.60) 

Flow velocity Ordinal variable describing flow velocity in the area of the 

respondent’s home (1=average man could easily stand up, 2=average 

man could barely stand, 3=average man would have been swept 

away)  

2.14 (0.93) 

Prior flood experience Dummy variable with the value 1 if the respondent has experienced a 

flood event before 

0.35 (0.48) 

Exposure   

Dwelling size Number of people in the household 2.34 (1.09) 

Geul river Dummy variable with the value 1 if the respondent is flooded by the 

river Geul 

0.60 (0.49) 

Homeowner Dummy variable with the value 1 if the household owns their home. 0.88 (0.33) 

Vulnerability   

Building year home Building year home 1938.13 (61.63) 

Farmhouse home Dummy variable with the value 1 if the respondent lives in a 

farmhouse  

0.12 (0.33) 

Detached home Dummy variable with the value 1 if the respondent lives in a detached 

house  

0.42 (0.49) 

Terraced home Dummy variable with the value 1 if the respondent lives in a terraced 

house  

0.14 (0.35) 

Semi-detached home Dummy variable with the value 1 if the respondent lives in a 

semidetached house  

0.25 (0.44) 

Apartment  Dummy variable with the value 1 if the respondent lives in an 

apartment 

0.07 (0.26) 

FDM x Dummy variable with the value 1 for the specific FDM measure 

(Table 2) 

Tables 3 and 5 

 

The last category of variables that explain flood damage are the vulnerability indicators. Where 

older buildings are found to be associated with higher flood damage, caused by outdated 

construction or poor maintenance (Merz et al., 2010). Next, building types differ in their 

susceptibility to flooding due to variations in their design, materials and construction (Merz et 
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al., 2013; Huizinga et al., 2017). Finally, it is relevant to assess the impact of FDM measures 

on flood damage (Table 2). The literature often makes a distinction between wet- and dry flood-

proofing measures (e.g., Kreibich et al., 2005; Poussin et al., 2012; De Moel et al., 2012). Dry-

proofing refers to sealing a building in such a way that water is not able to enter the building. 

Specific dry-proofing measures are placing barriers or elevating the building. The drawback of 

dry-proofing is that it often fails during extreme floods with high inundation depths (Kreibich 

et al., 2015; Poussin et al., 2012). In contrast to dry-proofing, wet-proofing is targeted at 

reducing the water’s destructive capacity once it has entered the building. Examples include 

using waterproof materials, placing a water pump and elevating electronic devices and power 

sockets. We do not include insurance as vulnerability-reducing factor, as prior research has 

demonstrated that flood insurance is not a significant factor in the adoption of FDM measures 

in the Netherlands. Mol et al. (2020a, 2020b) conducted an experimental study that found no 

evidence of moral hazard arising from flood insurance leading to reduced FDM uptake in the 

Netherlands. Furthermore, flood insurers do not actively incentivize the uptake of these 

measures (Dutch Association of Insurers, 2021).  

 

Table 2 

Overview of how specific FDM measures are grouped in different categories of FDM measures 

(N=312). 

FDM measure Emergency Structural Dry-proofing Wet-proofing 

Barriers X  X  

Elevating building above street level  X X  

Water pump X   X 

Water-resistant floor  X  X 

Water-resistant walls  X  X 

Other water-resistant materials  X  X 

Strengthening foundation  X  X 

Elevating electrical appliances  X  X 

Elevating personal possessions X   X 

Note: Water-resistant walls and strengthening the foundation are only applicable for damage to building structure; elevating 

personal possessions is only applicable to damage to household contents. 

Furthermore, a distinction between emergency and structural FDM measures is relevant from a 

policy perspective. Emergency measures refer to FDM measures taken shortly before a flood 

event is almost certain to occur (e.g., placing barriers, moving personal possessions to higher 

floors). Early warning systems play an essential role in facilitating emergency measures, 

through risk communication and insights in effective emergency response (Merz et al., 2013; 

Lendering et al., 2016; Kreibich et al., 2021). Structural FDM measures are taken as a 

precautionary preparation for a potential future flood event (e.g., strengthening the building 

foundation, placing a waterproof floor). By estimating the effect of both wet- and dry-proofing 

as well as emergency and structural FDM measures, the results of this study can be of use in 

different types of flood risk models, depending on the goal and scope of the modelling study.  
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3. Methodology 

3.1. Estimation technique 

Depth-damage functions are estimated using two different approaches arising from the 

literature. First, the median flood damage ratio at every inundation depth is plotted, using the 

25th and 75th percentile of the data as confidence intervals (Thieken et al., 2005, Wagenaar et 

al., 2017). This approach will not result in a smooth curve, but will give a relationship between 

inundation depth and flood damage. Next, a root function is used to describe the nonlinear effect 

inundation depth has on flood damage in regression models (Wagenaar et al., 2017; Sultana et 

al., 2018; Sieg & Thieken, 2022). When estimating the effect of inundation depth and multiple 

FDM measures, a regression equation in Ordinary Least Squares (OLS) would be as follows:  

𝐷𝑎𝑚𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝑖 =  𝛽0 +  𝛽1√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ𝑖 + 𝛽2𝐹𝐷𝑀𝑖 + 𝛽𝑘𝑋′𝑖 +  𝜀𝑖    (1) 

The damage ratio for either building structure or household contents for individual i is a 

function of the square root of inundation depth, FDM measures and the additional control 

variables (𝛽𝑘𝑋′𝑖) (Section 2.4). FDM measures are designed to reduce flood damage. However, 

households that perceive higher flood risk are more likely to take FDM measures (Noll et al., 

2022), This can result in a selection bias where households with FDM measures seem to have 

high damages, thus blurring the damage reducing effect of these measures. In econometrics, 

this selection bias manifests itself as a problem of endogeneity with the error term εi, where the 

variable FDM is positively correlated with both the dependent variable damage ratio and the 

unobserved household characteristics in error term εi. As a consequence, an OLS-estimation 

will give an underestimation of the true effect of FDM measures on flood damage. A Hausman-

Wu test (Wu, 1973; Hausman, 1978) on our data confirmed that there is indeed endogeneity 

present when estimating the effect of FDM measures using an OLS regression. For this reason, 

an approach that deals with endogeneity has to be chosen. An IV-regression is an approach to 

overcome the issue of endogeneity in regression analysis caused by selection bias that originates 

from unobserved individual characteristics (Angrist & Pischke, 2008). This method is also 

referred to as two-stage-least-squares (2SLS) and has been applied in this study as follows:  

𝐹𝐷𝑀̂𝑖 = 𝛿0 +  𝛿1√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ𝑖 + 𝛿2𝑃𝑟𝑖𝑜𝑟 𝑓𝑙𝑜𝑜𝑑 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 + 𝛿𝑘𝑋′𝑖 + 𝑢𝑖     (first stage) (2) 

𝐷𝑎𝑚𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝑖 = 𝛽0 + 𝛽1√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ𝑖 + 𝛽2𝐹𝐷𝑀̂𝑖 + 𝛽𝑘𝑋′𝑖 + 𝑒𝑖                 (second stage) (3) 

In an IV-regression, an exogenous variable functions as an instrument for the endogenous 

variable, in this case FDM. In the survey, respondents were asked whether they had experienced 

a flood event before. 35% of the flooded households in the survey have experienced a flood 

event at their home before July 2021. Prior flood experience can function as an exogenous 

instrumental variable in this case. The reason is that prior flood experience has been shown to 

increase the probability that a household adopts FDM measures (e.g., Bubeck et al., 2012; 

Koerth et al., 2017; Van Valkengoed & Steg, 2019). In the first stage, prior flood experience is 

used to predict whether a household takes FDM measures or not. In the second stage these 

predicted values are used instead of the actual values of FDM. Unobserved characteristics in 

the second stage are now no longer a predictor of adopting FDM measures, resolving the issue 

of endogeneity by removing the correlation with the error term ei. The first and second stage 

are performed for each individual FDM measure category separately. A Breusch-Pagan test has 

shown the need to apply robust standard errors (Woolridge, 2014), as we do in our study. There 

is not an issue of multicollinearity in our data, as the confounding variables in the regression 

models are not strongly correlated.  
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3.2. Assumptions of an Instrumental Variable (IV) regression  

Including prior flood experience as an instrumental variable means that it is one of the relevant 

drivers of FDM uptake, while also being exogenous to actual flood damage. There are two 

assumptions that need to be met to use a variable as instrument (Woolridge, 2014): 

1. Relevance: Cov(Prior flood experience, FDM) ≠ 0  

The first assumption is instrument relevance, which means that there should be a correlation 

between the instrumented variable (i.e. FDM) and the instrumental variable (i.e. Prior flood 

experience). The instrument should be able to explain variation of the endogenous variable. 

Without sufficient correlation between these two variables, it is not possible to make accurate 

predictions for the second stage of the 2SLS. This approach does not imply that prior flood 

experience is the main driver of FDM uptake, just that it is one of the drivers, and thus relevant 

to include in an IV-regression (Angrist & Pischke, 2008). In several review papers of individual 

flood preparedness, it has been found that prior flood experience does positively influence the 

adoption of FDM measures, which already implies that the instrument is relevant (e.g., Bubeck 

et al., 2012; Koerth et al., 2017; Van Valkengoed & Steg, 2019). The relevance assumption can 

be tested by rejecting the null-hypothesis of no correlation with a sufficiently small level of 

significance (i.e. 1% or 5%) (Woolridge, 2014). Staiger and Stock (1997) propose a rule-of-

thumb that the F-value of the first stage should be larger than 10. By performing these tests, it 

is found that the relevance assumption holds and these results are provided below for every 

regression model in Tables 4 and 6. 

2. Exogeneity: Cov(Prior flood experience, 𝜀𝑖) = 0 

The second assumption is exogeneity, which means that the instrument cannot affect the 

dependent variable in any other way than through the endogenous (instrumented) variable 

(Woolridge, 2014). This assumption cannot be tested, but should be discussed using knowledge 

of the system. Although there are various relevant indicators that drive the uptake of FDM 

measures (e.g., homeownership, coping appraisal, risk appraisal), these indicators are often not 

exogenous to flood damage. It is key that the instrument that explains the uptake of FDM 

measures is not associated with flood damage. In this context, prior flood experience should not 

influence current flood damage in other ways than through adopting more FDM measures.  

Prior flood experience is plausibly exogenous and not directly correlated with the error term in 

the regression equation. Specific hazard characteristics of the 2021 flood are not impacted by 

the fact that there has been a flood before. Prior flood experience is expected to only be 

correlated with flood damage through its impact on households’ decisions to invest in flood 

protection measures, as has been shown in the literature (e.g., Wind et al., 1999; Kreibich & 

Thieken, 2009). Prior flood experience and damage is therefore unlikely to affect flood damage 

to affect flood damage after a future flood event in any other way than through higher FDM 

uptake. It is, therefore, likely that the exogeneity assumption holds, which allows for an IV-

regression using prior flood experience as instrumental variable.  

 

3.3. Implications of 2SLS 

A limitation of an IV-approach is that it is not possible to include more instrumented variables 

than there are instruments available (Hansen et al., 2008). The implication of this limitation, is 

that multiple FDM measures cannot be incorporated in the model at the same time, although it 

is possible that some households adopt multiple FDM measures at once. Neither is it possible 
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to include an interaction term of the water level and the FDM measures, although some FDM 

measures differ in effectiveness at different inundation levels (Merz et al., 2013, Poussin et al., 

2014). In an attempt to overcome this, an additional analysis with separate regressions for 

different inundation depths has been included in the discussion and appendix. Finally, an IV-

regression produces larger standard errors compared to the same model in OLS, as the fitted 

values of the instrumented variables are used compared to its actual values, which increases 

uncertainty. For this reason, it may be more difficult to detect significant effects of FDM 

measures (Woolridge, 2014). 

 

4. Results 

4.1. Building structure: depth-damage relationship 

Figure 2 shows a bivariate depth-damage relationship, as frequently composed in the literature 

(e.g., Thieken et al., 2005;  Wagenaar et al., 2017). The y-axis gives the building damage ratio 

and the x-axis water level at the ground floor during the flood, divided in several classes. Where 

the median damage and the 25th and 75th percentile per inundation depth is given for the group 

that did implement FDM measures (in green) and the group that did not (in blue). The category 

labelled as ‘0 cm’ includes the group that faced water accumulation against the exterior wall of 

the building but prevented water from entering the building, as well as the group that 

experienced flooding only in the basement of the building.  

 

Figure 2. Depth-damage relationship for building structure, differentiated for the groups 

without FDM (blue) and with FDM (green) divided into emergency (A1) versus structural (A2) 

and dry- (B1) and wet-proofing (B2) FDM categories. The lower and upper part of the boxes 

represent the 25th and 75th percentile of flood damage ratios, with the median in between. 

Number of observations on top of the boxes.         
Note: The group with FDM measures (green) only reflects the group that has taken FDM measures reflected in the figure. The 

group without FDM (blue) did not take that specific measure, but may have taken other FDM measures.   
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In Figure 2, it is visible that the flood damage seems to follow a non-linear path, with a relatively 

large increase in damage ratios going from inundation depths below 20 cm to 20-50 cm. Flood 

damage slightly decreases at inundation depths higher than 1 meter, while the confidence 

intervals increase. Wagenaar et al. (2017) offer an explanation for this phenomenon, as 

households with the largest inundation depths may have been flooded before. Consequently, 

these households may be better prepared for future flood events, based on their prior flood 

experience. It is, therefore, important to note that the estimated effect of FDM measures is still 

prone to the selection bias as described before, as both groups (i.e., those with and without FDM 

measures) systematically differ from each other in their risk profiles. The size of the effect of 

FDM measures can, therefore, not be quantified as this effect will be underestimated. 

Nevertheless, the direction of the effect remains clear and it is possible to observe at which 

inundation depth certain FDM categories are more effective. However, it should be noted that 

even the group without FDM measures from Figure 2 experiences a decline in damage ratios 

above 1 meter for emergency and dry-proofing FDM measures. This observation can be 

attributed to some households having implemented multiple FDM measures. For instance, some 

households in the group that has not taken emergency FDM measures may have employed 

structural FDM measures, leading to a slight reduction in damage ratios for the group without 

emergency FDM as well. To determine the exact effect of FDM measures, an IV-regression 

will be conducted. 

Panel A1 shows no visual evidence for any effect of emergency measures at inundation depths 

below 20 cm. Additionally, lower damage ratios are observed for the ‘0 cm’ group (i.e., the 

group that managed to keep the water out of the building and where only the basement has been 

flooded) for all measures. We observe a larger difference in means between the group that has 

and has not taken structural FDM measures at inundation depths above 20 cm (Panel A2). Panel 

B2 shows that wet-proofing becomes more effective in reducing damage as inundation depth 

increases. At high inundation depths, it becomes increasingly difficult to keep the water out, 

where wet-proofing is observed to be more effective than dry-proofing (De Moel et al., 2012).   

 

4.2. Building structure: difference-in-means 

Table 3 gives the difference-in-means between the group that has taken FDM measures and the 

group that has not taken FDM measures. The group that has taken adaptation measures does 

have a lower mean absolute damage and damage ratio for each FDM category. When comparing 

absolute flood damage to buildings, a significant reduction for structural FDM measures and 

wet-proofing can be observed. When controlling for exposure by relating flood damages to 

building values, also emergency measures significantly (p<0.1) reduce flood damage. 

Moreover, using damage ratios instead of absolute damages also results in less uncertainty 

around the estimates of structural FDM measures. This highlights the importance of controlling 

for exposure in flood damage estimates, as it reduces errors in the estimates. We observe that 

wet-proofing buildings results in the largest damage reduction compared to the other FDM 

categories.  
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Table 3 

Damage reduction in absolute euro amounts and damage ratio for building structure by 

comparing the means of the group that has not taken FDM measures (A) and the group that 

has (B) of which the group sizes are shown in the columns by N. 

FDM measure N (A) N (B) Difference in absolute 

building damage (€) 

Difference in damage 

ratio building 

Emergency FDM 123 191 -10,032 -0.10* 

Structural FDM 184 130 -23,451** -0.14*** 

Dry-proofing 156 158 -6,276 -0.07 

Wet-proofing 142 172 -31,687*** -0.15*** 

 *** p<0.01, ** p<0.05, * p<0.1  

These results should be interpreted with caution, as the aforementioned selection bias is still 

present in the data. This does mean that we do observe the damage reducing capacity of these 

measures, although the estimates are likely to be an underestimation of the damage-reducing 

effect of the measures if people with FDM measures face higher flood risk. For this reason, an 

IV-regression will be applied in Table 4.  

 

4.3. Building structure: IV-regression for depth-damage curves and FDM measures 

Table 4 gives several regression specifications with the damage ratio for building structure as 

dependent variable. Models 1 and 4 give an OLS-specification, where Models 2,3,5,6 are 

computed using an IV-approach. Model 1 in Table 4 shows the OLS estimation as described in 

equation (1) in the methodology Section 3.1. The specification in OLS (Model 1) shows a 

smaller negative effect for all FDM measure categories compared to the IV-specifications 

(Models 2 and 3), which shows that there was endogeneity present in the OLS specification, as 

the effect of FDM measures was underestimated compared to the IV-specification that 

overcomes the selection bias. 

Adopting emergency measures significantly (p<0.05) reduces the damage ratio for building 

structure with 0.29, ceteris paribus. The F-value of the instrument confirms that the relevance 

assumption holds, as the value is larger than 10 (Staiger & Stock, 1997). It is found that having 

prior flood experience increases the likelihood of adopting emergency measures with 23%, 

keeping all the other variables constant. The instrument is significant at the 1% level in all 

models, which again confirms the relevance assumption. Model 3 shows that the effect of 

structural FDM measures is smaller compared to emergency measures, although still of an 

important size. The effect sizes of FDM measures in Table 4 are larger compared to the 0.10 

and 0.14 percentage point reduction in damage ratios observed using a difference-in-means test 

in Table 3. Moreover, the bias correction shows that the effect of dry-proofing is larger than the 

effect of wet-proofing on building damage, which is different from the relative effects from 

Table 3.  

Similar results are visible in Models 4-6, as OLS still underestimates the effectiveness of wet-

proofing and dry-proofing measures in Model 4 compared with the IV Models 5-6. The 

coefficient of dry-proofing is of similar size as that of emergency measures. This result makes 

sense as a large share of the measures within these categories are similar for the mitigation of 
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building damage. The coefficients of structural FDM measures and wet-proofing are of similar 

size as well, although the effect of wet-proofing measures is significant at the 1% level.  

The coefficient for inundation depth gives the shape of the depth-damage curve. It is confirmed 

that inundation depth is the most important hazard indicator for explaining flood damage, as 

this variable has the highest coefficient of all hazard indicators and remains significant between 

different specifications. The coefficient of the square root of inundation depth ranges between 

0.014 and 0.017 between the models and is significant at the 1% level. This confirms the 

relationship between inundation depth and flood damage as described in the literature (Thieken 

et al., 2005, Wagenaar et al., 2017; Sultana et al., 2018; Sieg & Thieken, 2022). 

All models consistently show that homeownership is associated with higher flood damage 

ratios. Homeowners are more susceptible to economic damage from flooding compared to 

tenants, as they have a greater financial investment in the property (Drakes et al., 2019). In this 

study, we used uniform maximum damage values for both homeowners and tenants. 

Homeowners have higher economic exposure compared to tenants, resulting in higher damage 

and thus, higher damage ratios because of the same property value baseline used in this study. 

The next significant variable in the models is the Geul river dummy, which is a dummy for the 

most disrupted area. It is shown that residents living along the Geul on average have a 0.10 

higher damage ratio compared to residents living in less disrupted areas.    
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Table 4 

Estimated coefficients using an OLS regression (Model 1 & 4) and an IV-regression (Model 

2,3,5,6) that explain building damage ratios in models including emergency (1 and 2), 

structural (1 and 3), and dry- (4 and 5) and wet-proofing (4 and 6). 

 (1) (2) (3) (4) (5) (6) 

VARIABLES OLS IV IV OLS IV IV 

       

 √Inundation depth 0.016*** 0.015*** 0.015*** 0.016*** 0.017*** 0.014*** 

 (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) 

Homeowner  0.090*** 0.107** 0.109*** 0.093*** 0.106** 0.115*** 

 (0.034) (0.044) (0.039) (0.034) (0.041) (0.040) 

Dwelling size 0.019 0.030* 0.024* 0.020 0.028* 0.025* 

 (0.013) (0.017) (0.014) (0.014) (0.016) (0.014) 

Building year home -0.000 -0.000 -0.000* -0.000 -0.000 -0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Geul river 0.104*** 0.102*** 0.093*** 0.102*** 0.106*** 0.087*** 

 (0.024) (0.030) (0.025) (0.024) (0.029) (0.024) 

Water rise rate -0.001 -0.001 -0.000 -0.001 -0.000 -0.001 

 (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) 

Water withdrawal rate 0.001 0.000 0.000 0.002 0.001 0.001 

 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

Flow velocity 0.017 0.019 0.026* 0.017 0.014 0.025 

 (0.015) (0.019) (0.016) (0.015) (0.018) (0.016) 

FDM Emergency 0.013 -0.289**     

 (0.027) (0.128)     

FDM Structural -0.076***  -0.222**    

 (0.026)  (0.087)    

FDM Dry-proofing    0.003 -0.284**  

    (0.026) (0.125)  

FDM Wet-proofing    -0.069***  -0.203*** 

    (0.027)  (0.077) 

Constant 0.458 0.727 0.757* 0.468 0.592 0.748* 

 (0.437) (0.491) (0.453) (0.427) (0.478) (0.421) 

       

Observations 311 311 311 311 311 311 

Adjusted R-squared 0.196   0.193   

Building FE X X X X X X 

       

F-value instrument  14.44 26.03  14.24 30.78 

β instrument   0.23*** 

(0.06) 

0.30*** 

(0.06) 

 0.23*** 

(0.06) 

0.32*** 

(0.06) 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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4.4. Household contents: depth-damage relationship 

Figure 3 gives a relationship between inundation depth and flood damage to household contents. 

We observe that flood damage to household contents follows the same pattern as for building 

structure, where there is a rapid increase in damage ratios from 1-20 cm to 20-50 cm. Note that 

these results are still prone to the selection bias, although the direction of the effect can be 

interpreted. It stands out that emergency measures seem to result in lower damage ratios until 

50 cm, where this difference is smaller at higher inundation depths (Panel A1). The damage 

reducing effect of structural FDM measures seems to be larger for water levels above 20 cm 

(Panel A2). Dry-proofing shows a larger damage reducing effect at inundation depths below 

one meter, where the largest damage reduction for wet-proofing is observed for inundation 

depths larger than 20 cm (Panels B1 and B2).   

 

Figure 3. Depth-damage relationship for household contents, differentiated for the groups 

without FDM (blue) and with FDM (green) divided into emergency (A1) versus structural (A2) 

and dry- (B1) and wet-proofing (B2) FDM categories. The lower and upper part of the boxes 

represent the 25th and 75th percentile of flood damage ratios, with the median in between. 

Number of observations on top of the boxes.        
Note: The group with FDM measures (green) only reflects the group that has taken FDM measures reflected in the figure. The 

group without FDM (blue) did not take that specific measure, but may have taken other FDM measures.   

 

4.5. Household contents: difference-in-means 

Similar to Table 3 for building damage, Table 5 gives the difference-in-means for household 

contents damage for the groups that have, and have not, taken FDM measures. All groups that 

have taken FDM measures experienced lower damage to household contents compared to the 

group that has not taken these measures. The difference between these groups is significant for 

absolute contents damage for structural FDM measures and wet-proofing. When controlling for 
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exposure, we can also distinguish a significant effect for emergency FDM measures (p<0.1). 

To overcome the selection bias and to make more precise estimates, a multivariate IV-

regression will be applied to the data. 

 

Table 5 

Damage reduction in absolute euro amounts and damage ratio for household contents by 

comparing the means of the group that has not taken FDM measures (A) and the group that 

has (B) of which the group sizes are shown in the columns by N. 

FDM measure N (A) N (B) Difference in absolute 

contents damage (€) 

Difference in damage 

ratio household contents 

Emergency FDM 97 175 -8,498 -0.13* 

Structural FDM 160 112 -11,412** -0.16** 

Dry-proofing 147 125 -3,141 -0.04 

Wet-proofing 129 143 -15,605** -0.34** 

 *** p<0.01, ** p<0.05, * p<0.1  

 

4.6. Household contents: IV-regression for depth-damage curves and FDM measures 

Table 6 presents the results of both an OLS and an IV-approach to explain the damage ratio of 

household contents. The depth-damage function for household contents follows the same path 

as for building structure, as the coefficient are of similar size and significance for inundation 

depth. Also the amount of time the water has been in the building significantly increases damage 

to household contents, where one additional hour of the flood water being in the house is 

associated with a 0.01 increase in the household contents damage ratio. Again, the coefficient 

for homeownership is significant and positive, which can be explained by homeowners having 

on average higher household contents values (Drakes et al., 2021), while we use the same 

baseline for homeowners and tenants.  

Emergency measures are shown to be more effective than structural FDM measures in reducing 

flood damage to household contents. These findings are similar to the findings for building 

damage in Table 4. The intuition behind this, is that moving personal possessions to higher 

floors is included in the category of emergency measures for household contents, which seems 

to be highly effective in reducing flood damage. The instrument in the IV-regressions is relevant 

for all models, except model 5. Although the instrument is still significantly correlated, the F-

value is below the threshold of relevance proposed by Staiger and Stock (1997), which indicates 

that the instrument is not strong enough to reliably estimate the effect of dry-proofing FDM 

measures on building damage. Wet-proofing is again significant at the 1% level and shows a 

0.38 reduction in the damage ratio when applied, keeping all other variables constant.  

 

  



manuscript submitted to Water Resources Research 

 

18 

 

Table 6 

Estimated coefficients using an OLS regression (Model 1 & 4) and an IV-regression (Model 

2,3,5,6) that explain household contents damage ratios in models including emergency (1 and 

2), structural (1 and 3), and dry- (4 and 5) and wet-proofing (4 and 6). 

 (1) (2) (3) (4) (5) (6) 

VARIABLES OLS IV IV OLS IV IV 

       

 √Inundation depth 0.017*** 0.017*** 0.014*** 0.017*** 0.018*** 0.013*** 

 (0.004) (0.004) (0.005) (0.004) (0.005) (0.005) 

Homeowner  0.161*** 0.191*** 0.183*** 0.164*** 0.180** 0.200*** 

 (0.049) (0.065) (0.057) (0.050) (0.072) (0.063) 

Dwelling size 0.023 0.027 0.035* 0.025 0.027 0.041** 

 (0.017) (0.019) (0.020) (0.017) (0.020) (0.019) 

Building year home 0.000 -0.000 -0.000 0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Geul river 0.108*** 0.097** 0.069 0.101*** 0.110** 0.044 

 (0.035) (0.046) (0.048) (0.035) (0.052) (0.050) 

Water rise rate -0.001 0.001 -0.001 -0.002 0.004 -0.002 

 (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) 

Water withdrawal rate 0.007*** 0.004 0.005* 0.007*** 0.008** 0.006** 

 (0.001) (0.003) (0.003) (0.001) (0.003) (0.003) 

Flow velocity 0.019 0.031 0.035 0.021 0.013 0.043* 

 (0.019) (0.026) (0.023) (0.020) (0.029) (0.025) 

FDM Emergency -0.005 -0.437**     

 (0.040) (0.171)     

FDM Structural -0.042  -0.375**    

 (0.035)  (0.150)    

FDM Dry-proofing    0.005 -0.539**  

    (0.035) (0.266)  

FDM Wet-proofing    -0.062*  -0.382** 

    (0.035)  (0.149) 

Constant -0.421 0.554 0.068 -0.397 0.387 0.168 

 (0.389) (0.588) (0.561) (0.374) (0.764) (0.524) 

       

Observations 251 251 251 251 251 251 

Adjusted R-squared 0.222   0.228   

Building FE X X X X X X 

       

F-value instrument  12.76 16.44  6.90 16.24 

β instrument   0.23*** 

(0.06) 

0.27*** 

(0.07) 

 0.18*** 

(0.07) 

0.27*** 

(0.07) 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5. Discussion 

5.1. Spatial fit of the model 

The purpose of Figure 4 is to detect a potential spatial pattern of the damage model. This is 

achieved by showing the root mean squared error (RMSE) of the predictions of Model 3 of 

Table 4 for each individual case. The Figure shows the RMSEs for this model, as this is the 

model with the most accurate predictions. The other IV-models from Table 4 and 6 are supplied 

in the appendix. It should be noted that these cases were also used to derive the model, 

indicating that this is not a validation exercise, but aimed at investigating and identifying any 

potential spatial patterns in the predictions of the model.  

It stands out that the model is able to predict flood damage fairly well, as the majority of 

observations show a RMSE below 0.15. The RMSE is larger than 0.3 for 39 out of 244 

households of which the geographical location is known. Approximately 90% of these 

households are located along the Geul. A closer look to this group shows that more than two-

third experienced large flood damage with building damage ratios larger than 0.4. For these 

cases, the model generally underpredicts flood damage. A potential explanation for this 

underprediction is the destructive capacity of high flood velocities and quickly rising flood 

water in these areas. In addition, households in this tributary river were caught by surprise and 

probably had less time to follow up early warning signals as compared to downstream 

communities (ENW, 2021). The model performs better further downstream, where slopes are 

less steep and flood damage is mainly caused by inundation depth.  

  

Figure 4. Root mean squared error (RMSE) of the model’s predicted structural flood damage 

ratio (Based on Table 4, Model 3).  
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5.2. Application in flood risk models 

The IV-regression outcomes presented in Tables 4 and 6 can serve as inputs for flood risk 

modeling, particularly for riverine flooding in unembanked areas, in the form of depth-damage 

curves. These curves are valuable for assessing flood risk, and the addition of FDM measures 

can enable household flood adaptation. However, empirical flood vulnerability estimates can 

vary between different types of floods and regions (Jongman et al., 2012; Wagenaar et al., 

2018). As our flood damage model is based on a specific flood event in the Netherlands with 

relatively low inundation depths and Dutch building types, they may not necessarily be 

representative for other flood events with different characteristics, such as higher stream 

velocities or water pollution. Therefore, it is necessary to exercise caution when using these 

models in other contexts. Table 7 gives the formulas that are the outcomes of Table 4 and 6.  

To apply these formulas in flood risk model, all known variables should be filled in the 

equation. To apply a FDM measure, the measure can have the value 1 in the formulas above to 

incorporate its damage-reducing potential. Note that the model can predict negative damage 

ratios, which implies no flood damage. Although it is more difficult to include the other 

explanatory variables due to a lack of information on input data, it is possible to include these 

to add more precision to the flood risk model. If some variables are unknown, one can account 

for this by simply filling in the sample mean from Table 1 to compose the damage function. 
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Table 7 

Flood damage formulas for building and contents damage to insert in flood risk models.              

 Damage ratio building structure Damage ratio household contents 

Emergency 

FDM 

measures 

0.727 + 0.015×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.289×FDM Emergency + 

0.107×Homeowner + 0.024×Dwelling size 

– 0.0004×Building year home + 0.102 

×Geul river - 0.001×Water rise rate + 

0.00002×Water withdrawal rate+ 

0.026×Flow velocity +0.033×BT_D + 

0.019×BT_T + 0.028×BT_SD – 

0.025×BT_A 

0.554 + 0.017×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.437×FDM Emergency + 0.191× 

Homeowner + 0.027×Dwelling size – 

0.0003×Building year home + 0.097 

×Geul river - 0.001×Water rise rate + 

0.004×Water withdrawal rate + 

0.031×Flow velocity + 0.102×BT_D + 

0.084×BT_T + 0.155×BT_SD + 

0.048×BT_A 

Structural 

FDM 

measures 

0.757 + 0.015×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.222×FDM Structural + 0.109× 

Homeowner + 0.024×Dwelling size – 

0.0004×Building year home + 0.093 

×Geul river - 0.0004×Water rise rate + 

0.0003×Water withdrawal rate + 

0.03×Flow velocity - 0.003×BT_D + 

0.004×BT_T – 0.011×BT_SD – 

0.041×BT_A 

0.068 + 0.017×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.375×FDM Structural + 0.183× 

Homeowner + 0.035×Dwelling size– 

0.0001×Building year home + 0.069 

×Geul river - 0.001×Water rise rate + 

0.005×Water withdrawal rate + 

0.035×Flow velocity +0.016×BT_D + 

0.043×BT_T + 0.061×BT_SD + 

0.046×BT_A 

Dry-

proofing 
0.592 + 0.017×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.284×FDM Dryproofing + 0.106× 

Homeowner + 0.028×Dwelling size – 

0.0003×Building year home + 0.106 

×Geul river – 0.00007×Water rise rate + 

0.001×Water withdrawal rate + 0.014× 

Flow velocity + 0.009×BT_D + 

0.009×BT_T – 0.003×BT_SD – 0.06×BT_A 

0.387 + 0.018×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.539×FDM Dryproofing + 0.180× 

Homeowner + 0.027×Dwelling size – 

0.0003×Building year home + 0.110 

×Geul river – 0.004×Water rise rate + 

0.008×Water withdrawal rate + 

0.013×Flow velocity + 0.156×BT_D + 

0.202×BT_T + 0.183×BT_SD + 

0.131×BT_A 

Wet-

proofing 
0.748 + 0.014×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.203×FDM Wetproofing + 0.115× 

Homeowner + 0.025×Dwelling size – 

0.0004×Building year home + 0.087 

×Geul river - 0.001×Water rise rate + 

0.001×Water withdrawal rate + 

0.025×Flow velocity + 0.024×BT_D + 

0.027×BT_T + 0.027×BT_SD – 

0.017×BT_A 

0.168 + 0.013×√𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ – 

0.382×FDM Wetproofing + 0.200× 

Homeowner + 0.041×Dwelling size – 

0.0002×Building year home + 0.044 

×Geul river - 0.002×Water rise rate + 

0.006×Water withdrawal rate + 

0.043×Flow velocity +0.079×BT_D + 

0.060×BT_T + 0.152×BT_SD + 

0.079×BT_A 

Note: for building types: BT_D=detached, BT_T=terraced, BT_SD=semi-detached, BT_A=apartment, farmhouses function as 

the reference category. These models are based on the outcomes of Table 4 and 6 for the IV-regression model where the 

respective FDM measure has been included. Building specific differences were included as fixed effects in the regression 

models, but are shown in Table 7 below (the full regression with visible building fixed effects can be found in the supplementary 

materials). 

Figure 5 shows how the formulas from Table 7 can be transferred into bivariate depth-damage 

curves by using the sample means for all variables except inundation depth and FDM measures. 

Table 7 shows how the original depth-damage curve can be shifted by structural and emergency 

FDM measures. The depth-damage curve without FDM can be drafted as the average of the 
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Models from Table 7, with the value of the FDM dummy being 0. Wet- and dry-proofing 

measures are excluded from the figure for more clarity, but can be inserted in the same way. 

Figure 5 shows the average of the coefficients with Model 2 and 3 from Tables 4 and 6 

functioning as an upper and lower bound of the estimates. It stands out that the average of the 

coefficients for structural and emergency FDM measures overlap for household contents, 

although the latter generally shows a larger damage reduction.  

  

Figure 5. Depth damage functions for no FDM measures (red), structural FDM measures (blue) 

and emergency FDM measures (green).                                         
Note: Curves are estimated by using the average coefficients from Models 2 and 3 from Table 4 (Building structure) and Table 

6 (Household contents) the sample averages from Table 1 for the other model covariates than inundation depth and FDM 

measures.    

 

5.3. Comparison with previous literature 

This study adds additional knowledge on both building structure and household contents 

vulnerability, which is essential for the flood risk model performance (Wagenaar et al., 2018). 

Our proposed approach in the supplementary materials also allows for the inclusion of other 

hazard, exposure and vulnerability indicators in depth damage curves, which allows to reduce 

the error in these vulnerability estimates even further. Merz et al. (2004) find a large scatter in 

their estimates of depth-damage curves, which can be attributed by the lack of control for 

exposure and vulnerability and additional hazard characteristics beside inundation depth. 

Thieken et al. (2005) are already more capable of reducing noise in their vulnerability estimates, 

as they control for building value.  

Comparing our depth-damage curves from Table 4 and Figure 5 to the German estimates (Merz 

et al., 2004; Thieken et al., 2005; Sultana et al., 2018), we observe that these curves follow a 

similar root function. Thieken et al. (2005) presented curves that illustrate the correlation 

between inundation depth and building damage ratios. Interestingly, their curves fall within the 

range of our estimated curves for households with and without FDM, indicating that Thieken 

et al. (2005) did not distinguish between these two groups, resulting in an average curve. In 

contrast, both Thieken et al. (2005) and Merz et al. (2004) operationalize inundation depths as 

water level above the top ground surface, while we define it as above the ground floor. 

Measuring the water level above the ground floor allows for the incorporation of a more specific 

building setting, as some buildings may be elevated above or below street level.  
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Building and contents vulnerability curves commonly used in Dutch flood risk assessments 

(SSM2017) are based on the 1953 coastal flood and the 1993 and 1995 riverine floods in the 

Netherlands, with some comparison with international studies (Slager et al., 2013; Slager & 

Wagenaar, 2017). We do observe that our vulnerability curves are higher compared to the 

original Dutch estimates for building structure below 150 cm. A potential explanation for this 

is that the Dutch curves are mostly based on the 1953 coastal flood, as there were relatively few 

observations available after the 1993 and 1995 riverine floods (Vrouwenvelder, 1997). The 

original Dutch estimates are therefore mostly based on a coastal flood event with high water 

levels, resulting in total destruction of buildings due to high flow velocities. In addition, in 1953 

some homes still had single brick walls, which can collapse much sooner than homes nowadays 

(de Bruijn et al., 2015). The SSM2017 functions therefore describe a total collapse of the home. 

As a consequence, the SSM2017 functions for both structure and contents follow an exponential 

path, with low economic damage at low inundation depth and a very steep increase in economic 

damage at higher inundation depths (Slager & Wagenaar, 2017). In contrast, our curves follow 

a root-function, with a relatively large increase in flood damage at lower inundation depths, to 

stabilize at higher inundation depths. These functions are more in line with other global 

estimates (Huizinga et al., 2017).  

Previous studies that have estimated the effectiveness of FDM measures may underestimate the 

effect due to a selection bias. We find that FDM measures are more effective in reducing flood 

damage than the literature shows. By comparing means, Kreibich et al. (2005) find a damage 

ratio reduction of approximately 0.07 due to wet-proofing for building structure. Using a similar 

database, Thieken et al. (2005) only find a significant effect for emergency measures. These 

FDM measures reduce this damage ratio with 0.08 to 0.23. As predicted, that found effect is 

smaller compared to our findings of 0.22 to 0.29 from Table 4, as the estimates from Thieken 

et al. (2005) do not control for endogeneity. Using a regression analysis Poussin et al. (2014) 

find an effect for several wet-proofing measures on structure building damage between -0.03 

and -0.07. These measures reduce household contents damage with -0.04 to -0.18, which again 

shows a lower value compared to our IV-estimates.   

Kreibich et al. (2005) and Thieken et al. (2005) do find that wet-proofing buildings is more 

effective than dry-proofing. These findings are in contrast with the findings of this study, where 

dry-proofing buildings is found to be more effective than wet-proofing (Tables 4 and 6). A 

potential explanation is that these studies studied the 2002 flood event in the river Elbe in 

Germany, which has shown much larger inundation depths compared to the July 2021 flood in 

the Netherlands. Literature has shown that dry-proofing fails with extreme inundation depths 

(Kreibich et al., 2015; Poussin et al., 2012). The inundation depths in the case study of the 

Netherlands were lower at many places, which implies that dry-proofing measures may have 

performed better.  

The mean building and contents damage of our sample are €53,070 and €25,626 respectively, 

which can be used to calculate the absolute damage reduction by multiplying this with the 

damage ratios from the results. This allows us to approximately compare the average outcomes 

of our study with studies that report flood damage reduction in absolute terms. Both Hudson et 

al. (2014) and Sairam et al. (2019) apply PSM to overcome the selection bias. Sairam et al. 

(2019) group all types of FDM measures together and find that these reduce flood damage with 

€11,238 to €15,053 (€12,185 to €16,322 when adjusted for inflation). Although our study 

distinguished multiple types of FDM measures, the lowest estimate for a category gives damage 

reduction of €10,614 and €14,860. Damage reductions are, therefore, of comparable magnitude. 

Similar rebuilding values between Germany and the Netherlands may be the reason for this.  



manuscript submitted to Water Resources Research 

 

24 

 

Hudson et al. (2014) use different FDM categories compared to the distinction made in our 

regression models. It is, therefore, not possible to compare the effect of separate FDM measures, 

as these specific measures within the categories of Hudson et al. (2014) and our study frequently 

overlap. For all categories, Hudson et al. (2014) find an average damage reduction for building 

damage between €2,976 and €14,385 (€3,227 to €15,598 when adjusted for inflation), while 

the average outcomes in our study range between €10.614 and €15,390. These sets of outcomes 

mostly fall into the same range, although our estimates show more accuracy with a smaller 

interval. For contents damage, Hudson et al. (2014) report structurally lower damage to 

household contents compared with our estimates.  

Although the outcomes of Sairam et al. (2019) and Hudson et al. (2014) are of similar 

magnitude as the average effect found in our study, the results of these PSM studies are less 

applicable in flood risk models. Regardless of actual property value, damage reductions are 

reported in absolute amounts in the PSM studies based in Germany. As a consequence, there is 

no differentiation in the effect of FDM measures possible for flood risk between different 

regions, neighbourhoods or households. Reporting flood damage reductions in terms of damage 

ratios allows for more differentiation with respect to exposure and vulnerability, resulting in 

more accurate flood risk predictions. 

 

5.4. Uncertainty and limitations 

A limitation of this study is the exclusion of the impact of water contamination on flood 

damage, despite its significant role as shown in the literature (Thieken et al., 2005; Merz et al., 

2013). The literature suggests that water contamination increases flood damage, mainly through 

the destruction of oil and septic tanks by floodwater (Thieken et al., 2005). Although these tanks 

are rarely used in the Dutch context, the exclusion of contamination does result in a lower 

explanatory power of our models. However, it does not bias our estimates of inundation depth 

and FDM estimates, as previous research found no correlation between contamination and these 

variables (Sultana et al., 2018), indicating no risk omitted variable bias (Woolridge, 2014). 

Uncertainty in vulnerability for flood risk models can be introduced by adjusting the FDM 

coefficients using the 95% confidence intervals presented in Figure 6. All FDM measures 

significantly reduce flood damage for both building structure and household contents. Standard 

errors, and therefore, confidence intervals, are larger when using an IV-regression compared to 

OLS. Notably, the estimates for household contents have wider confidence intervals than those 

for building structures, likely due to the smaller sample size for damage to household contents. 

There are particularly large confidence intervals for dry-proofing. This may be due to the weak 

instrument observed in Model 5 of Table 6. Additionally, dry-proofing occasionally failed for 

respondents. Roughly two-thirds of all barriers placed were found to be too weak or too low to 

keep the water out of the building. Dry-proofing is either very effective or completely 

ineffective, resulting in larger confidence intervals around the avoided damage estimate. 

Additionally, the regression analysis did not explicitly include inundation depth in the 

basement, despite residents reporting flood damage there. Additionally, inundation depth in the 

basement has not been explicitly included in the regression analysis. Although residents have 

experienced flood damage in their basement, the inclusion of inundation depth in the basement 

did not result in a larger explanatory power of the model.  
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Figure 6. 95% confidence intervals for the effectiveness of FDM measures in reducing the 

damage ratio for buildings (in blue) and contents (in orange). 

A limitation of the IV-approach is that it is not possible to include more instrumented variables 

than there are instruments available (Hansen et al., 2008). As a consequence, it is not possible 

to distinguish distinctive effects of FDM measures at different inundation depths, as an 

interaction term between the FDM measure and inundation depth cannot be included, as this 

variable will be endogenous as well. However, the literature has shown that most FDM 

measures in fact show different effectiveness at different inundation levels (Merz et al., 2013, 

Poussin et al., 2015).  

To address this limitation, an additional analysis with separate building damage regressions for 

inundation depths below and above 50 centimetres has been performed in Table A1 in the 

appendix, as this is a turning point also observed in Figures 2 and 3. By splitting our sample in 

two, the number of observations becomes smaller for these models. As a consequence, it 

becomes challenging to distinguish significant effects for both the instrument as FDM 

measures, especially with the already larger standard errors in an IV-regression (Woolridge, 

2014). Therefore, the effects in Table A1 in the appendix should be interpreted as exploratory 

analysis that could be updated with future research if larger datasets become available.  

The only models where there are significant results (p<0.1) with sufficient instrument relevance 

are the models for dry-proofing at inundation depths above 50 centimetres and wet-proofing 

below 50 centimetres. However, it is notable that the observed effect in Table 4 always falls 

between the coefficients of the models with lower and higher inundation depths. Emergency 

FDM measures are an exception, where the coefficient of both the <50 cm and >50 cm models 

are only 0.01 lower compared to the original specification. The size of the coefficient is smaller 

at higher inundation depths for dry-proofing, and higher for wet-proofing, which is in line with 
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the findings of Merz et al. (2013) and Poussin et al. (2014). To fully distinguish the effect of 

FDM measures on flood damage, more damage cases should be included in the analysis, or an 

additional relevant and exogenous instrument needs to be found in future studies.   

A recommendation for future research is to look into an instrument that is both relevant for 

FDM uptake and exogenous to flood damage. Although there are many variables that are known 

to influence FDM uptake (e.g., Bubeck et al., 2012; Koerth et al., 2017; Van Valkengoed & 

Steg, 2019), these variables are often associated with actual flood damage. For instance, 

homeownership does increase the probability of FDM uptake (Dillenardt et al., 2022). 

However, homeownership is not exogenous to flood damage, as homeowners typically 

experience higher flood damage as shown by both our outcomes and the literature (Thieken et 

al., 2005; Merz et al., 2013). Using homeownership as instrumental variable would thus still 

result in biased estimates. A future study could account for homeownership in FDM uptake by 

using PSM, an approach that has other restrictive assumptions compared to an IV-regression 

(Hudson et al., 2014; Sairam et al., 2019).  

 

6. Conclusion 

The assessment of potential flood damage and the effectiveness of adaptation measures is key 

information for flood risk management decisions. However, vulnerability inputs in flood risk 

models are often a large driver of uncertainty. Empirical data to estimate these vulnerability 

curves is rarely collected, where previous assessments of riverine flood risk vulnerability in the 

Netherlands are partially based on a coastal flood event in 1953. Still, these curves are used to 

inform decision optimal safety levels for dikes. Our study uses a unique and detailed dataset on 

experienced flood damage after the flood event in the Netherlands in 2021 to create and update 

empirical vulnerability estimates and to include FDM measures. The effectiveness of FDM 

measures is often underestimated due to a selection bias. This selection bias has been overcome 

by using prior flood experience as an instrumental variable to estimate the effectiveness of FDM 

measures. This resulted in flood damage vulnerability curves that account for the influence of 

FDM measures. By controlling for exposure, relative depth-damage functions offer a wider 

applicability to flood risk models.  

This study gives concrete recommendations for the implementation of vulnerability curves and 

the effectiveness of FDM measures in flood risk models. Multivariate damage models are 

composed that can function as vulnerability input in flood risk models, allowing for more 

differentiation by incorporating several hazard, exposure and vulnerability indicators. It is 

found that both emergency and structural FDM measures significantly reduce flood damage for 

both building structure and household contents, highlighting the importance of both information 

provision and early warning systems in effective flood risk management. Emergency FDM 

measures are generally more effective in reducing flood losses compared to structural FDM 

measures. Furthermore, dry-proofing is generally more effective than wet-proofing in reducing 

flood damage to buildings, which may be an implication of the relatively low inundation depths 

observed compared to other flood events. Future research may search for another relevant and 

exogenous instrument for FDM measures, where the instrument should influence FDM uptake, 

but should not be related to the amount of flood damage. Additional instruments or a larger 

sample size will allow for the estimation of the effect of FDM measures at different inundation 

depths. Moreover, more observational data should be collected to allow for the assessment of 

the effectiveness of FDM for different water levels.  
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Appendix 

  

Figure A1. Root mean squared error (RMSE) of the model’s predicted structural flood damage 

ratio for Table 4, Model 2 (Panel A), Model 3 (Panel B), Model 5 (Panel C) and Model 6 (Panel 

D)  

 

  



manuscript submitted to Water Resources Research 

 

34 

 

 

Figure A2. Root mean squared error (RMSE) of the model’s predicted flood damage ratio for 

household contents for Table 4, Model 2 (Panel A), Model 3 (Panel B), Model 5 (Panel C) and 

Model 6 (Panel D)  
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Table A1  

Estimated coefficients using an IV regression that explain building structure damage ratios in 

models that only use observations with the stated inundation depths including emergency (1 

and 2), structural (3 and 4), and dry- (5 and 6) and wet-proofing (7 and 8) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES <50 cm >50 cm <50 cm >50 cm <50 cm >50 cm <50 cm >50 cm 

         

√Inundation depth 0.02 -0.00 0.02*** -0.01 0.02 -0.01 0.02*** -0.01 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Homeowner  0.09* 0.14 0.07** 0.23** 0.10 0.12 0.08** 0.24** 

 (0.05) (0.09) (0.03) (0.09) (0.06) (0.09) (0.03) (0.10) 

Dwelling size 0.04* -0.00 0.03** 0.00 0.06 -0.01 0.03** -0.00 

 (0.02) (0.03) (0.01) (0.03) (0.04) (0.03) (0.01) (0.03) 

Building year home 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Geul river 0.08*** 0.08 0.09*** 0.02 0.06 0.10 0.09*** -0.02 

 (0.03) (0.06) (0.03) (0.08) (0.04) (0.06) (0.03) (0.09) 

Water rise rate 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Water withdrawal rate -0.00 0.00 -0.00 0.00 -0.00 0.01* -0.00 0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Flow velocity 0.06*** -0.07** 0.06*** -0.04 0.05** -0.06** 0.06*** -0.04 

 (0.02) (0.03) (0.02) (0.04) (0.02) (0.03) (0.02) (0.04) 

FDM Emergency -0.28 -0.28       

 (0.22) (0.18)       

FDM Structural   -0.15 -0.30*     

   (0.10) (0.18)     

FDM Dry-proofing     -0.39 -0.20*   

     (0.38) (0.11)   

FDM Wet-proofing       -0.14* -0.32 

       (0.09) (0.20) 

Constant -0.09 0.37 -0.20* 0.32* -0.02 0.28 -0.22** -0.32 

 (0.18) (0.23) (0.11) (0.18) (0.28) (0.19) (0.10) (0.20) 

         

Observations 202 109 202 109 202 109 202 109 

Building FE X X X X X X X X 

         

F-value instrument 3.53 7.59 11.53 7.82 1.67 16.40 13.46 7.19 

β instrument  0.14* 

(0.07) 

0.31*** 

(0.11) 

0.25*** 

(0.07) 

0.29*** 

(0.10) 

 

0.10 

(0.08) 

0.44*** 

(0.11) 

0.27*** 

(0.07) 

0.27*** 

(0.10) 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 


