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1. Introduction
• Ensemble forecasts are biased and uncalibrated (underdispersive).
• Ensemble postprocessing (PP) models are used to correct the
systematic errors and to calibrate the forecasts.

• These models often implicitly assume a Gaussian dependence between
the weather variable y and the ensemble forecasts x1, . . . , xm.

• Motivation: Allow a flexible dependence between y and x1, . . . , xm by a
vine copula.

2. Data
• Surface wind speed observations y from 60 SYNOP stations in
Germany (German Weather Service).

• ECMWF ensemble mean x• and control xctrl
• forecasts with 24h

leadtime of nine weather variables: surface wind speed (wspd), surface
wind speed u‐ and v‐component (u,v), surface wind direction (angle),
surface wind gust (wgust), surface temperature (temp), surface pressure
(sp), total cloud cover (tcc), specific humidity at 850hPa (sh).

• Notation: For example ensemble mean xwspd and control xctrl
wspd forecast

of surface wind speed (wspd).
• Three spatial variables: station longitude and latitude (xlon, xlat), station
elevation (xelev).

• Training data: January 2, 2016 to May 31, 2018; Validation data: June
1, 2018 to December 31, 2020.

• Four types of training periods: For forecasting, e.g. 1/6/2018 we use
the following model training data:

rolling

1/6/2016 1/6/2017 1/6/2018
refined

1/6/2016 1/6/2017 1/6/2018
monthly

15/6/2016 15/6/2017 1/6/2018
yearly

1/1/2017 1/1/2018 1/6/2018

3. Reference Model
Zero‐truncated EMOS
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• Zero‐truncated ensemble model output statistics (tEMOS) as
reference model, i.e.

y ∼ N0(µ, σ2),
µ(t) := a0 + a1xwspd(t) + a2x

ctrl
wspd(t), σ2(t) := b0 + b1S

2
wspd(t),

with ensemble mean xwspd, control forecast xctrl
wspd and empirical

ensemble variance S2
wspd.

• Parameter optimization with respect to CRPS (continuous ranked
probability score).

4. D-Vine Copula based PP
Model description
• A p‐dimensional copula is a multivariate distribution function on [0, 1]p.
• Sklar’s Theorem: For a p‐dimensional distribution function, there
exists a copula C , such that

F (x1(t), . . . , xp(t)) = C(F1(x1(t)), . . . , Fp(xp(t))),
where F• are the marginals of x•.

• Standard multivariate copulas C are too inflexible for dependence
modelling.

• Solution: Vine copulas, where the joint dependence C is build up by
only bivariate copulas (pair‐copula construction) and a nested set of
trees (vine).

• D‐vine: Nested set of trees in which each tree is a path.
• Example for a p = 3‐dimensional D‐vine with its pair‐copulas densities

c• and the joint density f :
f (x1(t), x2(t), x3(t)) = f1(x1(t))f2(x2(t))f3(x3(t))

· c1,2(F1(x1(t)), F2(x2(t)))c2,3(F2(x2(t)), F3(x3(t)))
· c1,3|2(F1|2(x1(t)|x2(t)), F3|2(x3(t)|x2(t))).

Tree 1

Tree 2

1 2 3
c1,2 c2,3

1,2 2,3
c1,3|2

• Joint modeling of y and its covariates x1, . . . , xp by D‐vine copula
based quantile regression (DVQR), i.e.
F −1

y|x1,...,xp
(α|x1(t), . . . , xp(t)) := F −1

y

(
C−1(α|Fx1(x1(t)), . . . , Fxp

(xp(t)))
)

,

where C−1 denotes the inverse conditional copula quantile function
obtained from the D‐vine copula.

Model estimation
• Marginal functions F• are estimated via kernel density estimates.
• Large set of copula families available (elliptical, archimedean,
nonparametric copulas).

• Automated forward predictor selection by minimizing a conditional
BIC.

• Variable importance criteria for a (p + 1)‐dimensional D‐vine copula
with x1, . . . , xm predictors and order y − xj1 − . . . − xjp

:

Imp(xj) :=

1 − sj − 1
m

, xj ∈ {xj1, . . . , xjp
},

0, otherwise,
where sj denotes the position of xj in xj1 − . . . − xjp

.

5. Setting
Local PP
Observation and forecast data from all available stations are combined to
estimate a single model valid for all stations.

• Training: Allow all copula families and the following predictors:

Method Predictors x•, xctrl
• of …

DVQR− wspd
DVQR+ wspd, u, v, angle, wgust, temp, sp, tcc, sh

• Validation: Reduce the copula family set for all stations and select the
predictors and its order according to the variable importance criteria
(Imp) for each station separately.
Method Amount of predictors Amount of copula families
DVQR− 1 (mostly xwspd) 2 (Gaussian, Gumbel)
DVQR+ 5 (mostly xwspd, xwugst, xu, xv, xtcc) 6

• Empirical pairwise contour (dependence) plots for y and xwspd:
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Global PP
Observation and forecast data from all available stations are combined to
estimate a single model valid for all stations.
• Training: Allow all copula families and the same predictor variables as
for the local PP except for DVQR+, where we add xlon, xlat, xelev.

• Validation: Reduce the copula family set and select the predictors and
its order according to the variable importance criteria (Imp) for all
stations.
Method Amount of predictors Amount of copula families
DVQR− 2 with fixed order xwspd − xctrl

wspd 3 (Gumbel, T, TLL)
DVQR+ 7 (mostly xwspd, xwugst, xtcc, xelev, xlat) 7

6. Results
Local PP

• DVQR−, DVQR+ and tEMOS improve the raw ensemble about
28%‐31% with respect to CRPS.

• DVQR+ outperforms tEMOS up to 6% with respect to CRPS.
• Best method and training period based on mean CRPS (left) or MAE
(right) incl. skill score improvement to the competing method:

Method

DVQR+ (57)

tEMOS (3)

Period

rolling (1)

refined (35)

monthly (14)

yearly (10)
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• DVQR+ yields sharper forecasts than tEMOS, but tEMOS yields slightly
more calibrated forecasts than DVQR+.

• PIT histograms aggregated over all validation days, stations and types of
training periods:
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Global PP
• DVQR+ outperforms tEMOS up to 8% with respect to CRPS.
• Best method and training period based on mean CRPS (left) or MAE
(right) incl. skill score improvement to the competing method:

Method

DVQR+ (52)

tEMOS (8)
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• tEMOS produces in overall sharper forecasts than DVQR+, while
DVQR+ yields more calibrated forecasts.

• PIT histograms aggregated over all validation days, stations and types of
training periods:
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General results
• Local DVQR and tEMOS models yield better results (with respect to e.g.
CRPS, MAE) than their global variants.

• No strong performance differences between DVQR− and tEMOS for
local & global PP.

• The refined training period performs the best with respect to CRPS
followed by the monthly training period.

• CRPS skill score improvement of DVQR+ over tEMOS for the local (left)
and global (right) models depending on the type of training period:
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7. Conclusion
• DVQR identifies the most important predictor variables.
• wspd, wgust, u, v, tcc are promising predictor variables for wind speed
PP.

• DVQR is able to significantly outperform tEMOS.
• Refined and monthly training period are very suitable for tEMOS and
DVQR wind speed PP.
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