

Total organic carbon measurements reveal large gaps in emissions monitoring and reporting page

Megan He¹, Jenna C. Ditto^{1,a}, Lexie Gardner¹, Jo Machesky¹, Tori N. Hass-Mitchell¹, Christina Chen¹, John D. Fortner¹, Desiree L. Plata^{1,c}, Brian D. Drollette^{1,d}, Katherine L. Hayden², Jeremy J.B. Wentzell², Richard L. Mittermeier², Amy Leithead², Patrick Lee², Andrea Darlington², Sumi N. Wren², Junhua Zhang², Mengistu Wolde², Samar G. Moussa², Shao-Meng Li³, John Liggio^{2*}, Drew R. Gentner^{1*} ¹Yale University, ²Environment and Climate Change Canada, ³Peking University, ^aWashington University in St. Louis, ^bPaul Scherrer Institute, ^cMassachusetts Institute of Technology, ^dRamboll

Introduction

Government monitoring of gaseous organic emissions has traditionally relied upon measurements of lighter volatile organic compounds (VOCs).

In reality, carbon emissions from most anthropogenic sources span a wide range of molecular sizes and functionalities. This is particularly relevant for the **oil and gas sector**, where emitted hydrocarbons from extraction and processing include heavier intermediate-volatility and semi-volatile organic compounds (IVOCs and SVOCs, C_{12+}) that form secondary air pollution.

Specifically, the Athabasca oil sands (OS) region in Canada, which currently produces ~3 million barrels of crude bitumen per day, provides a major opportunity to examine air pollutant reporting uncertainties.

Problem

- The global transition to unconventional petroleum resources and the associated shift in the volatility of emissions present challenges for traditional organic carbon monitoring and reporting.
- Limited reported emissions of individual carbon species from Canadian oil sands regions cannot be reconciled with incomplete existing emissions measurements.

Purpose & Objectives

We use airborne real-time measurements of total gaseous organic carbon (TC) to compare top-down emissions from oil sands mining operations to industryreported bottom-up estimates.

- Chemically speciate organic carbon emissions to highlight reporting discrepancies
- Compare the magnitude of emissions from oil sands operations to other Canadian sources
- Capture the full range of organic air pollutants and demonstrate the need to improve routine emissions reporting and monitoring beyond VOCs

Methods

- First application of sampling on a plane with offline high resolution mass spectrometry
- Research aircraft flew in box patterns and straight-line tracks to **sample airborne** measurements above oil sands facilities in summer 2018

- Online instruments: real-time measurements for total gaseous organic carbon & NOy
- Offline instruments: adsorbent tube sample collection of I/SVOCs, analyzed via GC–MS

Results

1. Total observed emissions greatly exceed reported emissions

For major facilities, a significant amount of carbon mass heavier than VOCs is missing, highlighting the importance of accounting for I/SVOCs.

