Novel insights into the biochemical drivers shaping $\delta^2 H$ of sugar and cellulose within a plants' leaf

<u>Philipp Schuler^{1,2}, Oliver Rehmann¹, Valentina Vitali¹, Matthias Saurer¹, Nina Buchmann², </u>

Arthur Gessler^{1,2}, Marco Lehmann¹

¹Forest dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland ²Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

If you want to understand the whole plant,

you must first understand the biochemical

<u>Chapter 3:</u> What we can learn from plants

with C₃, C₄, and CAM photosynthesis

processes within the leaves

before and after photosynthesis are not yet understood

- and physiological drivers:
 - photosynthetic pathways (C_3 , C_4 , CAM) under constant climatic conditions

Normalized Temperature Response Isotope

Fractionation:

Temperature
$$\uparrow = {}^{2}H \uparrow , {}^{18}O \& {}^{13}C \downarrow$$

All values in ‰ relative to their isotope standard

- Lab technician: 2002 2018
- B.Sc. & M.Sc. Env. Geosciences and Biogeography 2013–2019, University of Basel, Switzerland
- Ph.D. student since 2019 @ WSL and ETH, Zürich,
 - Switzerland; defense 13.07.2023
- e-mail philipp.schuler@wsl.ch
 - twitter @Phischuler

Supporting Information Chapter 4

¹⁸O and ²H temp response of leaf water and sugar

$\pmb{\epsilon}_{H}$ in response to depleting NSC reserves

$\boldsymbol{\varepsilon}_{c}$ in response to increasing \boldsymbol{C}_{i}

δ¹⁸O of the Leaf Water in response to increasing gsw (stomatal conductance)

