

Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere

Yichen Zhang¹, Shilong Piao^{1,2}, Yan Sun³, Brendan M. Rogers⁴, Xiangyi Li¹, Xu Lian¹, Zhihua Liu⁵, Anping Chen⁶ and Josep Peñuelas⁷

¹College of Urban and Environmental Sciences, Peking University, Beijing, China. ²Institute of Tibetan Plateau Research, Chinase Academy of Sciences, Beijing, China. ³College of Marine Life Sciences, Ocean University of China, Qingdao, China. ⁴Woodwell Climate Research Center, Falmouth, MA, USA. ⁵Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China. ⁶Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA. ⁷CREAF, Cerdanyola del Valles, Barcelona, Spain. ⁸CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain. Email: zhangyichen@stu.pku.edu.cn

PEKING UNIVERSITY

1. Introduction

The extratropical Northern Hemisphere plants play a critical role in mitigating global warming by fixing more C under warming and rising atmospheric CO₂ concentrations.

Weakened temperate control on productivity

Recent studies indicate a weakening or even **negative** temperature control on northern ecosystem productivity with warming.

Summer, the flourish but hottest season

Summer is the peak season for plant growth but also with temperatures **most possible to exceed optimal threshold** for growth.

Question: Would vegetation productivity respond negatively to future summer warming?

2. Data & Method

Model data:

- 9 Earth system models participating in **CMIP6** from **2001-2100**.
- Model outputs of GPP, air temperature, precipitation, solar radiation.

Observation data:

- FluxCOM GPP, solar-induced chlorophyll fluorescence and CRU climate datasets for **model validation** and **bias correction**
- Optimum temperature for vegetation productivity.

Analysis:

Fig. 2 ecosystem-scale optimum temperature for vegetation productivity (Huang et al., 2019)

Modelled reversal time

- Time at which partial correlation coefficient between **modelled**
- **v.s.** GPP and temperature shifts from positive to significant negative.

Theoretical reversal time

 Time when model-projected summer temperature (bias corrected) exceeds observation-based optimum temperature for vegetation productivity.

Optimum temperature

- latitudes by the end of this century.
- this century.

4. Discussions

Reasons for later modelled than theoretical reversal time

(1) Plant thermal acclimation

- **based optimum temperature** was assumed to be **constant** over time.

(2) Enhanced water use efficiency

(3) Vegetation dynamics

- The models with dynamic vegetation generally predicted a later reversal time than those without.
- Woody encroachment toward higher latitudes may transform biomes into warm-adapted ones.

(4) Biases in structure and parameterization of models

Thermal acclimation of plants has been increasingly **adopted in Earth System Models**, whereas **observation**-

Thermal acclimation may allow plants to operate at higher temperatures without reducing productivity.

All models **simulate** the **CO₂ effect on stomatal conductance**, which can suppress transpiration by partial stomatal closure and result in enhanced water use efficiency under elevated CO_2 concentrations.

Fig. 6 Delay of reversal time when taking dynamic vegetation into consideratio

5. Conclusions

Reversal of positive productivity-temperature correlation generally occurs before 2070 in regions <60°N, though Arctic productivity continues to increase with further summer warming.

The modelled correlation reversal time is generally later than the timing of temperature over optimal productivity requirement, suggesting partial **mitigation** from plant **photosynthetic thermal acclimation**.

Vegetation productivity could be impaired by climate change in the 21st century, which could negatively impact the global land carbon sink.

References

1. Huang M.T. et al. Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution 3, 772-779 (2019)