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Abstract: Soil moisture is a crucial component of the water cycle and plays an important role in
regional weather and climate. However, owing to the lack of In Situ observations, an accurate
understanding of the spatiotemporal variations of soil moisture (SM) on the Tibetan Plateau (TP) is
still lacking. In this study, we used three gridded SM products to characterize the spatiotemporal
features of SM on the TP during the warm season (May to August). We analyzed the fifth-generation
European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5), Global Land
Data Assimilation System (GLDAS), and Soil Moisture Active Passive (SMAP) datasets and used
station observation data and triple collocation to quantify product accuracy and consistency. Results
of the evaluation based on observation data show that both ERA5 and GLDAS overestimate SM,
while the accuracy of SMAP is high. In terms of capturing the temporal variations of SM measured at
stations, the performance of ERA5 and that of SMAP are superior to that of GLDAS. According to the
evaluation based on triple collocation, SMAP exhibits the smallest random error over the TP and the
highest temporal correlation with the unknown true SM in eastern TP. For SMAP, SM variability is
the largest in the southern TP. For ERA5 and GLDAS, variability in the western TP is substantially
larger than that for SMAP. Low-frequency (30–90 days) variations are the largest contributor to TP SM
intraseasonal variability. Relative to SMAP, the contribution of high-frequency variations is low in
ERA5 and GLDAS. Land-atmosphere coupling is stronger (weaker) in the western (southeastern) TP,
which is relatively dry (wet). Our evaluation of SM product performance over the TP may facilitate
the use of these products for disaster monitoring and climate and hydrological studies.

Keywords: soil moisture; Tibetan Plateau; spatiotemporal features

1. Introduction

Soil moisture (SM) is a key component of the Earth’s system [1,2]. It governs the
exchange of energy and water between the land surface and the atmosphere and controls
hydrological, meteorological, and ecological processes [3–5]. It is a crucial state variable
of the land surface and directly influences food security, human health, and ecosystem
function [6]. Therefore, quantification of the magnitude and dynamics of SM is crucial for
improving weather prediction and climate modeling [7] and is useful for extreme climate
early warning systems [8,9] and crop yield estimates [10–12].

The Tibetan Plateau (TP), known as the “Third Pole of the Earth” or the “Roof of
the World,” is the highest and most complex terrain plateau in the world, which covers
approximately 2.5 × 106 km2, with a mean elevation above 4000 m [13,14]. Because of
strong thermal and dynamic forcing, the TP greatly influences the regional climate over
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Asia and the global climate [15–17]. The TP is warming at a rate that is 1.5 times that of the
average global rate of warming, and is extremely sensitive and vulnerable to climate change
and its impacts [18–20]. Soil moisture is a key hydrological variable and an important
indicator of climate change over the TP. However, understanding of the spatiotemporal
characteristics of SM on the TP is limited by the sparseness of In Situ observations.

In Situ observations have been used to study the spatiotemporal characteristics of TP
SM. Deng et al. [21] analyzed data collected at 10 test sites and reported clear seasonal
variations (two maxima and two minima per year) in SM at Naqu. Wan et al. [22] analyzed
high-resolution hourly SM observations data at the BJ site in central TP and reported clear
diurnal variations in SM at a depth of 0–4 cm. Many SM products with high spatiotemporal
resolutions have been derived from satellite and numerical model data. They provide
new opportunities for studying the spatiotemporal characteristics of TP SM. However,
before the products can be used, it is necessary to quantify their accuracy and error,
because product quality is influenced by data assimilation technique, retrieval algorithm,
and model optimization.

In many recent studies, In Situ observations have been used to evaluate the accuracy
of SM products over the TP [23,24]. Chen et al. [25] used data from two observation
networks to evaluate SM products derived from the data of three satellite-borne microwave
sensors—the Soil Moisture Active Passive (SMAP), the Soil Moisture and Ocean Salinity
(SMOS), and the Advanced Microwave Scanning Radiometer 2 (AMSR2). Zeng et al. [26]
used In Situ observations to evaluate the accuracy of European Center for Medium-Term
Weather Forecast (ECMWF) reanalysis and seven remotely sensed SM products over the
TP. However, In Situ data are representative of the few square meters that are immediately
surrounding the observation station and most stations are located in central and eastern
TP, while SM products provide mean values of grid cells that cover hundreds of square
kilometers. The difference in scale reduces the reliability of evaluation results [27,28].

Triple collocation (TC) does not require In Situ observation data and has been widely used
to estimate the errors of combinations of three mutually independent SM products [29–31].
The basic assumptions of TC are error stationarity, error orthogonality, and zero error
cross-correlation, and are often violated [32]. Previous studies have shown that TC can
be used to obtain reliable estimates of random errors over areas where ground-based SM
data are unavailable. Crow et al. [27] found that the scale issue between grid-scale SM
products and point-scale In Situ observations can be minimized by using TC. To quantify
the correspondence between an SM product and the true SM value, McColl et al. [33]
proposed extended triple collocation (ETC), which is based on the same assumptions as
TC, and derived the correlation coefficient of the product with respect to the unknown true
SM value.

Some SM products have been evaluated by previous studies, but a systematic assess-
ment of SM products and a comparison of the characteristics of product-derived SM over
the TP are missing. Therefore, in this study, we compared the spatiotemporal characteristics
of TP SM during the warm season (May to August) derived from three SM products: the
fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric re-
analysis (ERA5), Global Land Data Assimilation System (GLDAS), and Soil Moisture Active
Passive (SMAP) datasets were analyzed. To quantify product accuracy and consistency,
we used In Situ observations to calculate conventional statistical metrics and conducted
an evaluation based on TC. Our results can be used to improve SM product quality and
further our understanding of the spatiotemporal characteristics of TP SM.

In Section 2, we provide a description of the data that were used in this study: they
include In Situ observation data and three SM products. Our methods are described in
Section 3: include conventional statistical metrics, TC, fast Fourier transform, and the terres-
trial coupling index. We present the results of the evaluation and comparison in Section 4.
The related discussions and our conclusions are presented in Sections 5 and 6, respectively.
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2. Materials
2.1. In Situ Observations

We used In Situ SM observation data provided by the Tibetan Plateau system mul-
tisource information integrated data sharing platform (http://data.cma.cn:8888/tipexn
(accessed on 1 December 2021)). Data from nine stations were used to validate SM products.
The newly released automatic soil moisture observation data has carried out quality control,
such as the relationship with ground temperature and precipitation, hourly variability and
internal relationship inspection, while unifying data format, units and characteristic values.
Stations are located across the TP: from west to east, they are Shiquanhe (SQH), Dongcuo
(DC), Cuoqin (CQ), Shenzha (SZ), Qiangma (QM), Anduo (AD), Naqu (NQ), Tuotuohe
(TTH), and Maqu (MQ) (black dots in Figure 1a). Stations DC, CQ, SZ, QM, AD, and NQ
were set in the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) and
began operation in 2015 [34]. They are in different locations across the TP and are under
different land surface and climatic conditions. According to previous studies, there is a
close correlation between surface SM and SM in deeper layers, and surface SM values are
sufficiently representative of local conditions [35]. Therefore, we used surface SM values
that were obtained hourly by a probe at a depth of approximately 10 cm, with measurement
resolution of 0.01 g·cm−3. To ensure data quality, continuity, and compatibility, we used
observation data from May, June, July, and August (MJJA) in 2017 and 2018 to evaluate
gridded SM products.

Figure 1. Spatial distribution of (a) topographic height, (b) land cover and (c) soil sand percentage.
Black dots present the nine observation stations on the Tibetan Plateau (TP): Shiquanhe (SQH),
Dongcuo (DC), Cuoqin (CQ), Shenzha (SZ), Qiangma (QM), Anduo (AD), Naqu (NQ), Tuotuohe
(TTH), and Maqu (MQ). The 30 m resolution land cover in (b) is obtained from the Earth System
Science Data [36]. The soil sand content data in (c) is from Resources and Environmental Sciences,
Chinese Academy of Sciences (RESDC) (http://www.resdc.cn (accessed on 1 January 2022)).

Land cover affects the energy, water exchange, and carbon cycle between land and
atmosphere. Most of the plateau is covered with grassland, while bare soil is mainly
distributed in the north (Figure 1b). The southeastern edge of the TP is partially covered
with forest. The soil over the TP is mainly sandy soil, especially in the western and northern
TP (Figure 1c).

2.2. Gridded Datasets

We used ERA5 reanalysis, GLDAS assimilation, and SMAP satellite data. The ERA5
(available at https://cds.climate.copernicus.eu (accessed on 1 December 2021)) is the fifth
generation of the global atmospheric reanalysis of the ECMWF. It covers January 1959 to

http://data.cma.cn:8888/tipexn
http://www.resdc.cn
https://cds.climate.copernicus.eu
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near real time. Temporal resolution is 1 h and spatial resolution is 0.25◦ × 0.25◦ [37]. It uses
the new version of the ECMWF assimilation system in the Integrated Forecasting System
(IFS) to assimilate historical and newly released observations, and the accuracy of the SM
product derived from ERA5 is higher than that from ERA-interim [38,39]. We used the
volumetric soil moisture data (unit: m3 m−3) from the first layer (depth of 0–7 cm).

The GLDAS is a global land data assimilation system developed jointly by National
Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC), and
the National Center for Environmental Forecasting (NCEP) of the National Oceanic and
Atmospheric Agency (NOAA) in the United States [40]. It uses advanced land surface
modeling and data assimilation techniques to generate optimal fields of land surface
states. It consists of three land surface models—NOAH, CLM, and MODIS—and one
hydrologic model—VIC. We used soil moisture (unit: kg·m−2) of the first layer (depth of
0–10 cm) of the GLDAS_NOAH output: temporal resolution of 3 h and spatial resolution
of 0.25◦ × 0.25◦. We obtained the data from the NASA Goddard Earth Sciences Data and
Information Services Center (GES-DISC) websites (https://disc.gsfc.nasa.gov/datasets
(accessed on 1 December 2021)).

According to previous studies, the accuracy of TP SM derived from SMAP is higher
than that from SMOS and AMSR [25,41]. In January 2015, NASA launched SMAP [42]
with an L-band (1.41 GHz) radiometer and an L-band (1.26 GHz) radar, which operate in
a sun-synchronous morning and evening orbit at an altitude of 685 km. Only radiometer
data have been available after radar failure in July 2015. We used the SMAP Level-4 Global
3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (available
at https://nsidc.org/data/spl4smau/versions/6 (accessed on 1 December 2021)), which
was generated by assimilating SMAP L-band brightness temperature observations into
the NASA Catchment Land Surface Model. It provides a complete and consistent picture
of land surface hydrological conditions [43,44]. We used surface (depth of 0–5 cm) soil
moisture data (unit: m3 m−3) with temporal resolution of 3 h and spatial resolution of 9 km.

3. Methods

Soil moisture units and temporal resolutions vary with dataset. Therefore, we con-
verted all data to volumetric water content (unit: m3 m−3) and used daily average values.

3.1. Statistical Metrics

We used In Situ observation data from MJJA in 2017 and 2018 to evaluate the three
SM products over the same period. Ding et al. [45] matched station soil temperature and
moisture data with gridded data and found that the nearest neighbor-matching method
resulted in standard errors that were lower than those from bilinear interpolation. Therefore,
we used a proximity grid method to match In Situ observations with gridded data. While
statistical metrics are important evaluation results, a single metric is usually insufficient
to fully characterize SM estimate errors [46]. Therefore, to quantify product accuracy and
the consistency between products and In Situ observations, we used five conventional
statistical metrics: mean bias (Bias), root mean square error (RMSE), unbiased RMSE
(ubRMSE), Pearson correlation coefficient (R), and ratio of the standard deviation (SDR).

Bias is the mean difference between product-derived SM and observed SM:

Bias =
∑N

i=1(θs(i)− θo(i))
N

(1)

where N is the length of the time series, which is 246, and θs and θo are product-derived and
observed SM at time step i, respectively. Positive bias indicates that product-derived SM is
higher than observed SM (wet bias), while negative bias indicates that product-derived SM
is lower than observed SM (dry bias).

https://disc.gsfc.nasa.gov/datasets
https://nsidc.org/data/spl4smau/versions/6
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The RMSE is the absolute difference between product-derived SM and observed SM:

RMSE =

√
∑N

i=1(θs(i)− θo(i))
2

N
(2)

A small RMSE value indicates a close agreement between product-derived and ob-
served SM. We removed the difference between the long-term mean of product-derived
SM and that of observed SM to obtain ubRMSE:

ubRMSE =
√

RMSE2 − Bias2 (3)

A small ubRMSE value indicates a small unbiased error. The linear relationship
between product-derived SM and observed SM is quantified by R:

R =
1
N ∑N

i=1
(
θs(i)− θs

)(
θo(i)− θo

)
σsσo

(4)

where θs and θo are the mean product-derived SM and observed SM time series, respec-
tively, and σs and σo are the standard deviations of product-derived SM and observed SM,
respectively.

The amplitude of product-derived SM variations relative to the amplitude of observed
SM variations is measured by SDR, which is the ratio between the standard deviations of
product-derived and observed SM:

SDR =
σs

σo
(5)

An SDR value that is close to 1 indicates a close agreement between the amplitude of
product-derived SM variations and that of observed SM variations.

We used mean square error (MSE), which is the square of the RMSE, to quantify the
error between product-derived and observed SM:

MSE =
∑N

i=1(θs(i)− θo(i))
2

N
(6)

The MSE can be decomposed and rewritten as [38,47]:

MSE = 2σsσo(1− R) + (σs − σo)
2 +

(
θs − θo

)2
(7)

where 2σsσo(1− R) is the correlation term, (σs − σo)
2 is the standard deviation term, and(

θs − θo
)2

is the bias term, which quantify the influence of the difference between product-
derived and observed SM in terms of temporal variability, amplitude of variation, and
mean, respectively.

3.2. Triple Collocation

Triple collocation is a statistical method for estimating the standard deviation of the
random errors of three mutually independent SM datasets. Data from SMAP are only
available from 2015 onwards. Therefore, we used ERA5, GLDAS, and SMAP data from
May to August between 2015 and 2021 as the three collocated datasets. Spatial resolutions
vary with dataset. Therefore, we bilinearly interpolated all data onto a 0.25◦ × 0.25◦ grid.

The basic assumptions of TC are (1) linearity between product-derived SM and true
SM signal, (2) independence between the errors of triplets, (3) independence between the
errors of triplets and the true SM signal, and (4) SM signal and random error stationarity
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(i.e., their mean values and variances remain constant over time) [32]. The three datasets
can be represented as follows: 

θ1 = α1 + β1θ + ε1
θ2 = α2 + β2θ + ε2
θ3 = α3 + β3θ + ε3

(8)

where θi (i = 1, 2, 3) is one of three collocated independent datasets, θ is the unknown true
SM, αi and βi are additive and multiplicative biases of dataset θi relative to θ, respectively,
and εi is the additive random error with zero mean. Errors are either systematic (α, β) or
random (ε). We used TC to estimate the standard deviation of the random error. By differ-
entiating Equation (8), the standard deviation of the random errors of the three datasets
can be obtained as: 

σε1 =
√

σ2
1 −

σ12σ13
σ23

σε2 =
√

σ2
2 −

σ12σ23
a13

σε3 =
√

σ2
3 −

σ13σ23
σ12

(9)

where σεi (i = 1, 2, 3) is the standard deviation of the random error of dataset i (TC-RMSE),
σ2

i is the variance of dataset i, and σ12, σ13 and σ23 are the covariances of datasets 1 and
2, 1 and 3, and 2 and 3, respectively. A small TC-RMSE value indicates a small standard
deviation of the random error. Compared with the conventional ubRMSE, the TC-RMSE
also removes the spatial representativeness error based on the removal of long-term mean
bias, which is one of the advantages of the TC method.

The ETC uses the same assumptions as TC and can be used to quantify the linear
correlation (TC-R) between product-derived SM and the unknown true SM as follows:

TC− R1 =
√

σ12σ13
σ2

1 σ23

TC− R2 =
√

σ12σ23
σ2

2 σ13

TC− R3 =
√

σ13σ23
σ2

3 σ12

(10)

where TC− Ri (i = 1, 2, 3) is the correlation coefficient between dataset i and the true SM
signal. A TC-R value that is close to 1 indicates a strong correlation between product-
derived SM and the unknown true SM.

3.3. Fast Fourier Transform

Fast Fourier transform (FFT) is widely used to analyze variability in nonstationary
time series at individual periodicities [48–50]. To examine SM intraseasonal variability, we
decomposed the daily time series into three frequency bands using FFT. The frequency
bands are high frequency (2–10 days), intermediate frequency (10–30 days), and low
frequency (30–90 days). Using FFT, we obtained the SM amplitude spectrum (FSSM(k)) for
the kth frequency. We calculated the power spectrum (ESSM(k) = |FSSM(k)|2), which is
the square of the absolute value of FSSM(k). We obtained the power sum of the ith (i = 1,
2, 3) frequency band, which is also the variance of the SM time series in the ith frequency
band. To quantify the relative size of the variance of the three bands, we calculated the
quotient between the variance of the ith band and the sum of the variances of the three
bands (variance percentage). A large variance percentage indicates a strong signal from
that frequency band.

3.4. Terrestrial Coupling Index

Various local land-atmosphere coupling metrics have been developed to quantify
relationships between land surface and atmospheric processes. These include triggering
feedback strength (TFS), amplification feedback strength (AFS), soil moisture memory,
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mixing diagrams, and terrestrial coupling index [51]. The terrestrial coupling index (I)
reflects the extent to which soil moisture changes drive surface fluxes and can be easily
used to indicate the strength of local soil moisture–evapotranspiration coupling [52]. It is
defined as:

I = σSM
dET
dSM

= σETr(SM, ET) (11)

where SM is soil moisture, ET is evapotranspiration, σET is the standard deviation of ET,
and r is the correlation coefficient between SM and ET. dET/dSM is the slope of the linear
regression of ET against SM and measures the sensitivity of ET to SM variations. A large
positive I value indicates strong coupling.

4. Results
4.1. Product Evaluation Based on In Situ Observations

The climatological mean, Bias, RMSE, and ubRMSE of product-derived SM relative to
observed SM are shown in Figure 2. All three products are wet-biased at most stations and
the magnitude of the wet bias of ERA5 is the largest at all stations, except SQH and MQ.
The ERA5 overestimates SM: the largest bias is 0.48 m3 m−3 (at station TTH). The GLDAS
overestimates SM, except at MQ. The magnitude of the wet bias of GLDAS exceeds that of
SMAP. The magnitude of the bias of SMAP is the smallest, and SMAP-derived SM is the
closest to observed SM. For ERA5, the large bias is associated with large RMSE values that
are spread across a wide range: ERA5 RMSE values are between 0.05 and 0.38 m3 m−3, and
have an average of 0.2 m3 m−3. At stations SQH and MQ, ERA RMSE values are relatively
small—0.09 and 0.05 m3 m−3, respectively. For GLDAS, RMSE values are between 0.07 and
0.14 m3 m−3, and have a mean of 0.11 m3 m−3. For SMAP, RMSE values are between 0.03
and 0.1 m3 m−3, and have a mean of 0.07 m3 m−3. The difference between product-derived
and observed SM is the smallest in SMAP. For ERA5, ubRMSE values are larger at the
stations in western TP (0.09–0.12 m3 m−3) and smaller at the stations in eastern TP. For
GLDAS, ubRMSE values are large at all stations: average ubRMSE is 0.06 m3 m−3. For
SMAP, ubRMSE values are relatively small at all stations: mean ubRMSE is less than
0.04 m3 m−3, which meets the accuracy requirements specified before the launch of the
SMAP mission (average ubRMSE of 0.04 m3 m−3).

Figure 2. The (a) climatology, (b) mean bias (Bias), (c) root mean square error (RMSE), and (d) unbi-
ased RMSE (ubRMSE) of product-derived soil moisture (SM) relative to In Situ measurements of SM
for May to August in 2017 and 2018 on the Tibetan Plateau.
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The Taylor diagram of R and SDR of product-derived SM relative to observed SM is
shown in Figure 3. For ERA5, R values are between 0.45 and 0.91, and have an average
of 0.74, while at stations DC, NQ, and MQ, R values are relatively high and are 0.9, 0.84,
and 0.83, respectively. For GLDAS, R values are between 0.23 and 0.78 and the average is
0.54. For SMAP, R values are between 0.29 and 0.77 and the average is 0.65. The correlation
coefficients of ERA5 are the highest, and those of GLDAS are the lowest. In terms of captur-
ing the temporal variations of SM measured at stations, ERA5 has the best performance.
For ERA5, SDR values are between 0.77 and 3.91 and the average is 1.83. At stations SQH,
CQ, and DC, the amplitudes of ERA5-derived SM variations exceed those of observed SM
variations, and SDR values are 3.91, 3.36, and 2.49, respectively. For GLDAS, SDR values
are between 0.55 and 2.11 and the mean is 1.39. For SMAP, SDR values are between 0.64
and 1.57 and the mean is 0.99. The amplitudes of SMAP-derived SM variations are the
closest to the amplitudes of observed SM variations.

Figure 3. Taylor diagram of the Pearson correlation coefficient (R) and the ratio of the standard
deviation (SDR) of product-derived soil moisture (SM) relative to In Situ measurements of SM; REF
indicates In Situ SM measurements.

To further examine the differences between the three products and In Situ observations,
we decomposed the MSE of each product at each of the nine stations (Figure 4). For ERA5,
at station SQH, the standard deviation term exceeds the correlation term. This indicates
that the amplitude of ERA5-derived SM variations needs to be improved. At stations
DC and CQ, the correlation term is smaller than the standard deviation and bias terms.
This indicates that the main error of ERA5-derived SM at these stations comes from errors
in capturing the amplitude of SM variations and accuracy of SM. For ERA5, MSE is the
smallest at station MQ. This indicates that ERA5 can sufficiently capture observed SM at
MQ. At other stations, the large bias term indicates that the accuracy of ERA5-derived SM
needs to be improved. For GLDAS, improvements are needed in terms of accuracy and
correlation. At all stations, MSE of SMAP is smaller than the MSE of ERA5 and that of
GLDAS. For SMAP, improvements can be made in terms of correlation and accuracy at
stations SZ, QM, and MQ. However, relatively small biases may be caused by the mismatch
of grid cells, which is related to the high heterogeneity of the land surface within grid cells.

The temporal variations of SM averaged over the nine stations is shown in Figure 5a.
The scatterplot of product-derived SM against observed SM is shown in Figure 5b. Accord-
ing to In Situ observations, SM increases from May to August. This trend is reproduced by
ERA5 and SMAP, although ERA5 noticeably overestimates SM values. For GLDAS, SM
decreases sharply between mid-May and mid-June, while observed SM increases slowly.
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As a result, R of GLDAS is low. The SMAP has the best overall performance, with a small
additive bias (0.02 m3 m−3) and a high correlation coefficient (0.79). SMAP-derived SM is
the closest to observed SM in terms of both magnitude and temporal variations.

Figure 4. Decomposition of the three terms of the mean square error (MSE) for the three soil moisture
products at nine observation stations.

Figure 5. Soil moisture (a) time series and (b) scatterplot for three soil moisture products and In Situ
observations for May to August in 2017 and 2018. * represents the Pearson correlation coefficient (r)
is statistically significant at the 95% confidence level according to Student’s t test.

4.2. Product Evaluation Based on Triple Collocation

The spatial distribution of the standard deviation of random errors derived from TC
(TC-RMSE) and triple collocation correlation coefficients (TC-R) for ERA5, GLDAS, and
SMAP is shown in Figure 6. For ERA5, TC-RMSE values are larger in western than in
eastern TP. This indicates that the standard deviation of random errors is higher in western
than in eastern TP. The TC-RMSE of GLDAS is large over the entire TP. For SMAP, TC-RMSE
is small, except over the Himalayan region in southwestern TP. Values of TC-R indicate
that correlation between ERA5-derived SM and the assumed true SM is high in western TP
and low in eastern TP. This indicates that the performance of ERA5 is superior in terms
of capturing the temporal variations of SM in western TP. For GLDAS, TC correlation is
higher in southern than in northern TP. For SMAP, TC correlation is higher in eastern than
in western TP. It can be found that the spatial distributions of TC-RMSE and TC-R are
uneven over the TP, implying spatial variations in product performance, which may be
related to soil texture, topography, vegetation, and land cover. The contribution of these
factors to product error needs to be further investigated.
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Figure 6. Spatial distribution of (a–c) the standard deviation of random errors derived from triple
collocation (TC-RMSE) and (d–f) triple collocation correlation coefficients (TC-R) for (left column)
the fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis
(ERA5), (central column) Global Land Data Assimilation System (GLDAS), and (right column) Soil
Moisture Active Passive (SMAP) datasets.

To further examine product performance over the entire TP, we created boxplots of TC-
RMSE and TC-R for ERA5, GLDAS, and SMAP (Figure 7). The TC-RMSE values for ERA5
are the largest. Median and mean TC-RMSE values are 0.035 and 0.040 m3 m−3, respectively,
for ERA5 and are considerably larger than those for GLDAS and SMAP. The range of the
standard deviation of the random errors for ERA5 is the largest and the range for GLDAS is
the smallest. This indicates considerable spatial variation in ERA5 performance and stable
performance for GLDAS across the TP. For GLDAS, median and mean TC-RMSE values are
0.035 and 0.036 m3 m−3, respectively. Median and mean TC-RMSE values for SMAP are
the smallest and are 0.023 and 0.026 m3 m−3, respectively. The range of TC-RMSE values
for SMAP is smaller than that for ERA5. For TC-R, GLDAS values are the lowest (median
of 0.63 and mean of 0.61), and SMAP values are the highest (median of 0.81 and mean of
0.75). Median and mean TC-R values for ERA5 are 0.70 and 0.68, respectively. There is little
difference between the ranges of TC-R values of the three products. Therefore, we infer
that the performance of SMAP is superior to that of ERA5 and GLDAS in terms of both
TC-RMSE and TC-R, which is consistent with the results of the product evaluation based
on In Situ observations.

Figure 7. Boxplots of (a) the standard deviation of random errors derived from triple collocation
(TC-RMSE) and (b) triple collocation correlation coefficients (TC-R) for all grids in the three products.
Blue line indicates the median. Triangle indicates the mean. Bottom and top horizontal lines indicate
the 10% and the 90% quantiles, respectively.

Because of spatial variation in product performance, we identified the optimal product
for each grid cell in terms of TC-RMSE and TC-R (Figure 8). Each of the three products is
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optimal for different parts of the TP. For TC-RMSE, the optimal product is the product with
the lowest value and SMAP has the lowest TC-RMSE values over most of the TP. For TC-R,
the optimal product is the product with the highest value and ERA5 has the highest TC-R
values over western TP, while SMAP has the highest values over eastern TP.

Figure 8. Optimal product with (a) the lowest standard deviation of random errors derived from
triple collocation (TC-RMSE) and (b) the highest triple collocation correlation coefficient (TC-R) for
each grid cell. Blank indicates missing values due to violation of triple collocation assumptions.

4.3. Spatiotemporal Variability

The spatial distribution of monthly average SM derived from ERA5, GLDAS, and
SMAP for the warm season (May to August) between 2015 and 2021 is shown in Figure 9.
All three products can capture the general characteristics of the spatial distribution of TP
SM. Soil moisture is high in the southeast and decreases gradually across the TP towards
the northwest, and is consistent with the spatial distributions of precipitation and land
cover. Precipitation is the lowest over the desert in northern TP and the highest over
the Hengduan Mountains in southeastern TP [53]. Forests in southeastern TP transition
gradually across the TP into meadows, grasslands, and deserts towards the northwest [54].

Figure 9. Spatial distribution of monthly average soil moisture derived from (a–d) the fifth-generation
European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5), (e–h) Global
Land Data Assimilation System (GLDAS), and (i–l) Soil Moisture Active Passive (SMAP) datasets for
May to August 2015–2021 over the Tibetan Plateau.

There are variations in the magnitudes of product-derived SM. For ERA5, SM values
are approximately 0.1 and 0.5 m3 m−3 in western and eastern TP, respectively, in May. After
May, SM increases by nearly 0.3 m3 m−3 in western TP and changes little in eastern TP. Max-
imum SM derived from ERA5 is in the eastern Tanggula Mountains, with approximately
0.7 m3 m−3. For GLDAS, SM increases by approximately 0.1 m3 m−3 from May to August
and maximum SM is in southeastern TP, with approximately 0.4 m3 m−3. For SMAP, SM in
southern TP also increases by 0.1 m3 m−3 between May and August and maximum SM
is in southeastern TP, with 0.4 m3 m−3. Therefore, we conclude that ERA5 considerably
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overestimates SM on the TP, especially in eastern TP, and GLDAS overestimates SM in
northern TP.

The spatial distribution of the standard deviation of SM for MJJA over the TP is shown
in Figure 10 and is used to quantify SM temporal variability. In southwestern TP, standard
deviations are relatively large for all three products, although there are differences between
products. For SMAP, standard deviation is large in southern TP and small in northern TP
(less than 0.03 m3 m−3). In southwestern and southeastern TP, standard deviation exceeds
0.06 m3 m−3. For ERA5, standard deviation is less than 0.04 m3 m−3 in southeastern TP,
exceeds 0.1 m3 m−3 in western TP, and is considerably larger than that for SMAP. This
indicates that ERA5 may overestimate SM variability in western TP and underestimate
SM variability in southeastern TP. Relative to SMAP, SM variability is high in GLDAS in
northwestern TP and low in southeastern TP.

Figure 10. Spatial distribution of the standard deviation of daily soil moisture for May, June, July, and
August derived from (a) the fifth-generation European Centre for Medium-Range Weather Forecasts
atmospheric reanalysis (ERA5), (b) Global Land Data Assimilation System (GLDAS), and (c) Soil
Moisture Active Passive (SMAP) datasets.

To further examine SM intraseasonal variability, we decomposed the daily SM time
series into high-, intermediate-, and low-frequency bands and calculated the contribution
of each band to the total variance of the three bands (variance percentage). The spatial dis-
tribution of the variance percentages of the three products is shown in Figure 11. For ERA5
and GLDAS, the variance percentage of the low frequency band is the largest and the vari-
ance percentage of the high frequency band is the smallest. There is little spatial variation
in the variance percentages of the different bands. This indicates that the intraseasonal
variability of SM derived from ERA5 and that derived from GLDAS are dominated by low
frequencies. For SMAP, the variance percentage of the low-frequency band in southern TP
is large and exceeds 40%, but in northern TP, there is little difference between the variance
percentages of the different bands. This indicates that the variability of SMAP-derived
SM is high on the 30- to 90-day scale in southern TP. In northern TP, the intensities of the
signals of the three frequency bands are approximately equal. For ERA5 and GLDAS and
relative to SMAP, the contribution of the high-frequency band over the entire TP is low and
the contribution of the low-frequency band in northern TP is high.

To examine the long-term trend of warm-season SM, we analyzed the spatial distri-
butions of the trends of MJJA SM and simulated precipitation from ERA5 and GLDAS
between 1981 and 2021 (Figure 12). Data from SMAP were excluded because they only
cover 2015 to the present. For ERA5, SM has been increasing in western TP over the past
40 years at approximately 0.02 m3 m−3 per decade, while there is no clear trend in eastern
TP. In contrast, for GLDAS, SM has been decreasing in western TP (in excess of 0.01 m3 m−3
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per decade) and increasing slightly in eastern TP. Precipitation is the dominant driver of SM
changes [55]. To further examine the inconsistencies between ERA5 and GLDAS trends, we
analyzed the trends of simulated precipitation over the TP from ERA5 and GLDAS over the
same period. For ERA5, precipitation has been increasing in western TP (in excess of 3 mm
in warm season per year), and there is no clear trend in eastern TP. However, for GLDAS,
precipitation has been decreasing in western TP (approximately in excess of 4 mm in warm
season per year) and increasing in southwestern TP (in excess of 6 mm in warm season per
year). For both ERA5 and GLDAS, spatial patterns of precipitation trends match their SM
trends. Studies have shown that the summer precipitation has been increasing over the
west TP in the last three to four decades, which is largely associated with the weakened
westerlies [56–58]. Thus, ERA5 performs better than GLDAS in presenting the long-term
trends of SM over the TP.

Figure 11. Variance percentages of the (left column) high-, (central column) intermediate-, and (right
column) low-frequency bands from (a–c) the fifth-generation European Centre for Medium-Range
Weather Forecasts atmospheric reanalysis (ERA5), (d–f) Global Land Data Assimilation System
(GLDAS), and (g–i) Soil Moisture Active Passive (SMAP) datasets.

Figure 12. Annual trends of (a) soil moisture (SM) derived from the fifth-generation European Centre
for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5) dataset, (b) SM derived from
the Global Land Data Assimilation System (GLDAS) dataset, (c) precipitation derived from ERA5,
and (d) precipitation derived from GLDAS for the warm season between 1981 and 2021 over the
Tibetan Plateau. Dots indicate areas with trends that are statistically significant at the 95% confidence
level according to Student’s t test.

4.4. Land-Atmosphere Coupling

Quantification of the strength of the land-atmosphere coupling over the TP has been
limited because of the lack of large-scale and long-term SM datasets. Soil moisture products
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based on satellite and numerical model data have high spatiotemporal resolutions and
provide new opportunities for studying land-atmosphere coupling over the TP. To this end,
we analyzed daily SM and ET from ERA5 and GLDAS over the TP for the warm season
(May to August) between 1981 and 2021. The 31-day running means of SM and ET were
removed from the time series to eliminate the effect of the seasonal cycle on analysis results.
The terrestrial coupling index (I) was derived using SM and ET anomalies.

The spatial distribution of I derived from ERA5 and GLDAS is shown in Figure 13a,b.
Values of I derived from both ERA5 and GLDAS are positive in western TP. This indicates
strong ET response to SM anomalies: SM is the main factor limiting ET in this region.
However, in eastern TP, there are large differences between I values derived from ERA5
and those derived from GLDAS. For ERA5, I value is mostly negative in eastern TP. This
suggests that in this region, ET is insensitive to SM variations and energy is the main factor
restricting ET. In contrast, for GLDAS, I value is mostly positive in eastern TP. For both
datasets, the land-atmosphere coupling is stronger in the relatively dry western TP. The
difference in the pattern of coupling strength between GLDAS and ERA5 is related to their
different SM patterns (Figure 9), with ERA5 has much higher SM than GLDAS in eastern
TP. GLDAS shows much weaker spatial variability in SM and I values (Figure 13c), with
the highest I values in the intermediate SM condition. These are consistent with previous
finding that the strongest land–atmosphere coupling is in the humid–arid transition zone,
where ET is strongly influenced by SM (e.g., Koster et al. [7] and Wei et al. [59]).

Figure 13. Spatial distribution of the terrestrial coupling index (I) in May, June, July, and August of
1981–2021 derived from soil moisture (SM) and evapotranspiration (ET) from (a) the fifth-generation
European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5) and (b) Global
Land Data Assimilation System (GLDAS) datasets. Positive values indicate strong coupling. Dots
indicate areas with trends that are statistically significant at the 95% confidence level according to
Student’s t tests. (c) Pointwise relationships between I index and SM for ERA5 and GLDAS. The lines
are the averages for the points (the points are separated into 13 groups according to the ranking of
SM and the averages for the groups are shown).

5. Discussion

Through the above evaluation and analysis, we found that SM data from SMAP and
ERA5 had good accuracy and continuity, which is consistent with previous studies [60–62].
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Identification of sources of error and factors affecting product performance can facilitate
the widespread use of SM products.

Discrepancies between gridded and In Situ data may arise from differences in spatial
scale and choice of surface soil thickness [63]. There is high spatial heterogeneity in TP SM.
In Situ observations are only representative of the few square meters that are immediately
surrounding the observation station, while SM products based on satellite and numerical
model data provide mean values of grid cells that cover hundreds of square kilometers.
For example, one grid cell in ERA5 covers over 600 km2. Spatial mismatch between
SM products and In Situ observations may result in deviations between product-derived
and observed SM, especially in areas with large SM variability. In In Situ observations,
measurements were conducted at a depth of 10 cm, as few sites have data on 5 cm. For
ERA5, GLDAS, and SMAP, we used SM values from depths of 0–7, 0–10, and 0–5 cm,
respectively. The slight differences in depth may also affect evaluation results. In addition
to using In Situ observations to evaluate SM products, we also conducted an evaluation
based on TC, which does not require In Situ data. The consistent results indicate that TC can
be used as a supplement to In Situ evaluation, which is appropriate for studies of estimating
the random error of three mutually independent SM products and the correlation between
product-derived SM and the unknown true SM in the absence or lack of In Situ data. As the
stations are mainly distributed over the inner TP, the evaluation results based on In Situ
observations are only representative in these areas. Results are uncertain in other regions
of the TP. It should be noted that the evaluation results of the TC method and statistical
metrics are not completely consistent across regions.

The performance of model-based products could be affected by uncertainties in the
atmospheric forcing, model structure, and data assimilation scheme, which can be major
sources of error [24]. Our results show that the correlation between ERA5-derived and
observed SM is stronger than that between GLDAS-derived and observed SM. We also
found differences between the annual SM trends derived from ERA5 and GLDAS for
1981–2021, and the simulated precipitation trends are consistent with SM trends. The land
field simulated by ERA5 is forced by ERA5 atmospheric fields, while the GLDAS (GLDAS-
2.0, GLDAS-2.1) models are forced by NOAA/Global Data Assimilation System (GDAS)
atmospheric analysis fields [64], the disaggregated Global Precipitation Climatology Project
(GPCP) precipitation fields [65], and the Air Force Weather Agency’s Agricultural Mete-
orological modeling system (AGRMET) radiation fields. In terms of land surface model,
ERA5 uses HTESSEL, while GLDAS uses NOAH. More importantly, ERA5 uses 4D-Var
data assimilation, but the GLDAS (GLDAS-2.0, GLDAS-2.1) models are open-loop and
do not include data assimilation. The ERA5 and GLDAS differ in terms of forcing data,
model structure, and data assimilation scheme. These differences could lead to differences
in product performance. In addition, Qin et al. [66] indicated that the soil texture and
land cover types may have greater impacts than precipitation in increasing the biases of
model-derived SM over the TP.

For the satellite-based products, retrieval algorithms and auxiliary parameters, such as
vegetation parameters, soil texture, topography, and surface temperature, may have greater
impacts on product-derived SM [67–69]. Zhao et al. [69] pointed out that uncertainties in
the vegetation parameters are some of the main sources of error in SM retrievals. According
to several studies, the random error in SMAP-derived SM increases with radio-frequency
interference (RFI) [28,70]. Over time, the SMAP team has developed a series of measures to
deal with RFI issues. For example, SMAP can detect and mitigate a large number of low-
to medium-level RFI, thereby reducing the impact of RFI on SM retrieval [71]. To further
improve the performance of SM products, the contributions of these factors need to be
further investigated.

6. Conclusions

We used In Situ observation data from nine stations and TC to quantify the accuracy
and consistency of the gridded SM products from ERA5, GLDAS, and SMAP. We examined
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the spatiotemporal characteristics of warm-season SM and land-atmosphere coupling on
the TP. The main findings of this study are as follows:

(1) Product evaluation based on In Situ observations indicates that both ERA5 and
GLDAS overestimate TP SM. SMAP-derived SM is the closest to observed SM in
terms of magnitude. In terms of capturing the temporal variations of SM measured at
the stations, the performance of ERA5 and SMAP is superior to that of GLDAS.

(2) Product evaluation based on TC indicates that the random errors of ERA5 are the
largest and those of SMAP are the smallest over the entire TP. Correlation between
ERA5-derived SM and the unknown true SM is strong in western TP. For GLDAS,
random errors are large and the correlation with true SM is low. In eastern TP, the
performance of SMAP is superior to that of ERA5 and GLDAS in terms of correlation
with the true SM. In general, results of the evaluation based on TC are consistent with
those based on In Situ observations.

(3) All three products indicate high SM in the southeast, which decreases gradually across
the TP towards the northwest. For SMAP, SM variability is the largest in southern TP.
For ERA5 and GLDAS and relative to SMAP, SM variability in western TP is high and
contribution of high frequencies is low. Intraseasonal variability is the highest on the
30- to 90-day scale. ERA5 performs better than GLDAS in presenting the long-term
trends of SM in 1981–2021 over the TP.

(4) For both ERA5 and GLDAS, land–atmosphere coupling is stronger in western TP,
which is relatively dry. Coupling is weaker in eastern TP, especially for ERA5. This is
because SM from ERA5 is considerably higher than that from GLDAS in eastern TP.

In this study, we evaluated the performance of the ERA5, GLDAS, and SMAP SM
products over the TP. The results may facilitate the use of these products for disaster
monitoring and climate and hydrological studies.
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