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Comparison of optimization methods for the maximum likelihood ensemble filter 
Takeshi Enomoto1,2 and Saori Nakashita3

Abstract 
EnVAR such as the Maximum Likelihood Ensemble 
Filter (MLEF)[1] is a promising approach for 
assimilation of nonlinear observations.

The original MLEF uses the CG or a quasi-Newton 
method with Hessian preconditioning.

The Newton method is affordable in EnVAR.

Our alternative formulation uses the Hessian to 
solve the Newton equation.

Simple tests show that the Newton method works 
better than CG due to uninterrupted optimization.


Optimization algorithms 
Preconditioned CG in the original MLEF 

Hessian preconditioning of the forecast covariance




where .

A step size is calculated with a line search.

During optimization the normalized observation 
perturbation matrix  may be fixed or updated in




Exact Newton (EN) in our variant 

The minimum of the quadratic approximation of the 
cost function is obtained by solving the Newton 
equation  exactly. 
During iterations  and 

 are updated. 
No line search is used, i.e. the step size is always 1. 

Benchmark functions 
Hessian can effectively 
precondition Booth 
(quadratic), but not 
Rosenbrock (quartic).

EN climbs to a vantage 
point for the minimizer.


Wind-speed assimilation 
Wind  is nonlinearly related to magnitude

 and direction : .

Assimilate a wind-speed observation  m/s with

 m/s to a 1000-member ensemble with 
 around the first guess  m/s[2,3].


CG with updated  is 
terminated in the line 
search and yields the same 
solution as EN1 because of 
increasing cost at the 
second iteration.

EN converges quadratically 
but requires more (26) 
iterations than CG with 
fixed  (5 iterations).  

Cycled assimilation experiments 
Assimilate quadratic observations ( ) into 
the Korteweg-de Vries–Burgers (KdVB) equation 


 

every 200 steps at every grid point1.

The truth and the control are 
lagged two-soliton solutions. 
The ensemble size is 10.

Both EN and CG can approach 
the truth in several cycles.

CG and EN1 have a large error 
corresponding to wiggles.

EN provides accurate analysis 
for stable forecasts.


Discussions 
Iterations effectively reduce 
analysis error.

Line search conditions 
may halt iterations to 
hinder convergence.

Hessian preconditioning 
may not be effective for nonlinear observations.

EN can minimize the cost quadratically with noisy 
ensemble-based gradients and Hessians.


References 
1. Zupanski 2005, doi:10.1175/MWR2946.1.

2. Bowler et al. 2013, doi:10.1002/qj.2055.

3. Lorenc 2003, doi:10.1256/qj.02.131.


This work is supported by KAKENHI 19H05698, 
19H05605 and 21K03662, and JSPS22J21757. 

x − xf = P1/2
f w = P1/2

f (I + C)−T/2ζ
C = ZTZ, Zj = R−1/2 [H(xf + pf

j) − H(xf)]

Z
∇ζ J = (I + C)−1ζ − (I + C)−1/2ZTR−1/2 [y − H(x)]

∇2Jd = − ∇J
∇wJ = w − YTR−1 [y − H(x)]

∇2
wJ = I + YTRY, Yj = H(x + pf

j) − H(x)

u = (u, v)T

|u | θ (u, v)T = |u | (cos θ, sin θ)T

y = 3
σy = 0.3
σx = (2, 2) xf = (2, 4)

Z

Z

H(u) = u2

ut + 6uux + uxxx = νuxx

(a) (b)

1. Disaster Prevention Research Institute, Kyoto University, 2. Application Laboratory, Japan Agency for Marine-Earth Science and Technology

3. Graduate School of Science, Kyoto University, 🇯🇵Japan

First cycle in 100 tests
fail nconv niter

EN 0.0812 0 77 40.8
CG 0.0795 2 0 6.2

0.0860 21 0 2.9
EN1 0.0861 56 0 1

ℓ2

CG fixed Z

f(x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 f(x1, x2) = (1 − x1)2 + 100(x2 − x2
1)2

Cost function in the descent direction of EN
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