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Motivation
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• The stochastic variations (a.k.a. noise)
in GNSS station position time series
are temporally & spatially correlated.

• Temporal correlations are well studied
and routinely accounted for in GNSS
time series analysis.
– A ‘white + flicker’ noise model is usually

appropriate and employed.

• Spatial correlations as less well
characterized and often ignored, while
their consideration could improve:
– offset detection (Gazeaux et al. 2015),

– velocity estimation (Benoist et al. 2020),

– spatial filtering,

– error budgets for GNSS velocity fields,
plate rotation poles, strain maps…
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Objective of this work:

Establish a mathematical framework for the 
modeling of random vector fields on the sphere.
(such as the field of 3D stochastic GNSS station displacements)

To start with, only random isotropic vector fields are considered.
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• The theory of random scalar fields
on the sphere is well established.
– See for instance the extensive textbook

by Marinucci & Peccati (2011).

– Many recent developments have been
motivated by the study of the
Cosmological Microwave Background.

• A random scalar field on the sphere f(θ,λ) is said
to be (weakly) isotropic if, for any rotation R:
– E[f(R(θ,λ))]  =  E[f(θ,λ)]

(Its expected value is rotationally invariant.)

– cov[f(R(θ,λ)), f(R(θ’,λ’))]  =  cov[f(θ,λ), f(θ’,λ’)]
(Its covariance is rotationally invariant.)

• Isotropy implies:
– E[f(θ,λ)]  =  μ (The expected value is constant over the sphere.)

– cov[f(θ,λ), f(θ’,λ’)]  =  c(ψ) (The covariance only depends on the distance between two points.)

– Note that c(ψ) needs to satisfy certain conditions to be admissible as a covariance function.

ψ =  arccos(cosθ·cosθ’ + sinθ·sinθ’·cos(λ–λ’)) 
=  angular distance between (θ,λ) and (θ’,λ’)
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• A random isotropic scalar field on the sphere has the following spectral decomposition:

– Yn,m =  spherical harmonic of degree n, order m (complex, orthonormalized, with Condon-Shortley phase factor)

– fn,m =  random variable (spherical harmonic coefficient of the random field)

• The fn,m coefficients satisfy:
– E[fn,m]  =  0

– (since f(θ,λ) is real and                              )

– cov[fn,m, fn’,m’]  =  δn,n’ δm,m’Cn (They are pairwise uncorrelated, and their variance depends only on the degree n.)

– If f(θ,λ) is gaussian, the fn,m coefficients of non-negative orders are not only uncorrelated, but also independent.

• The sequence (Cn)0 ≤ n ≤ ∞ is called the angular power spectrum of the field.
– It describes how the variance of the field is distributed across spherical harmonic degrees, i.e., spatial wavelengths.

– Indeed:  
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• The covariance function c(ψ) and the angular power spectrum (Cn) of a random isotropic
scalar field on the sphere are linked through the Legendre transform:

• This result provides the link between the spatial and spectral representations of a random
isotropic scalar field on the sphere.

• It is analogous to the Wiener-Khinchin theorem for a stationary random process (of time),
which states that its autocovariance and power spectral density are linked through the
Fourier transform.

• It also provides a necessary and sufficient condition for c(ψ) to be admissible as a covariance 
function: the coefficients (Cn) of its Legendre transform need to be positive.
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• Some analytical models:

Covariance function Angular power spectrum Samples

2cos211c  +−−= /)()( )/()( 12n14C n
n +−= 

))(()( 1cosexpc −=  )()(/  1/2nn exp22C +−= I

I =  modified Bessel function of the first kind
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• Some more analytical models:

Covariance function Angular power spectrum Samples

)())(()(  sin1cosexpc 0J−= ))(()( n!12n/exp4C n
n +−= 

J =  Bessel function of the first kind

)()(  −= expc See Lantujoul et al. (2019)
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• A versatile model defined through a stochastic partial differential equation (SPDE):

– Angular power spectrum is flat (white) at low degrees,
then follows a power-law.

– α/2 =  spectral index of the power-law

– κ =  cutoff degree

– No analytical expression for the covariance

– Analogous to the generalized Gauss-Markov (GGM)
process of time (Langbein, 2004)
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spherical Laplace operator white noise on the sphere
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• A random vector field on the sphere is said to be (weakly) isotropic if, for any rotation R:
–

–

– i.e., if its mean and covariance are invariant under rotations of the sphere simultaneously with the coordinate system.

• Isotropy implies:

Besides, for a given point, and a pair of antipodal points:
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The covariance of the field components in the UVR frame
only depends on the distance between pairs of points.

The UVR frame of a pair of points
• U = along the great circle joining both points
• V = perpendicular to the great circle
• R = radial (not shown in the figure) 
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• A random isotropic vector field on the sphere has the following spectral decomposition:

– =  vector spherical harmonics =  basis for vector fields on the sphere

– =  basis for radial vector fields

– =  basis for tangential, curl-free (a.k.a spheroidal) vector fields

– =  basis for tangential, divergence-free (a.k.a toroidal) vector fields

– rn,m, sn,m, tn,m =   spherical harmonic coefficient of the random vector fields =  random variables
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• The rn,m, sn,m, tn,m coefficient triplets satisfy:
– E[rn,m, sn,m, tn,m]  =  [0, 0, 0]

–

–

– If      is gaussian, the coefficient triplets of non-negative orders are not only uncorrelated, but also independent.

• The sequences can be called the radial, spheroidal & toroidal

angular power spectra of the vector field.
– They describe how the variance of the field is distributed across spherical harmonic degrees (i.e., spatial wavelengths)

and across its radial, spheroidal and toroidal components.

– Indeed: 
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The triplets are pairwise uncorrelated, and their
covariance matrix only depends on the degree n.
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• The covariance function C(ψ) and the angular power spectrum (Cn) of a random isotropic
vector field on the sphere are linked via the following transform:

– The          are Gel’fand et al. (1958)’s generalized spherical functions. They are related to the Jacobi polynomials.
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• There is no (known) analytical {covariance/spectrum} couple for the tangential part.

• But the SPDE-based model previously introduced for scalar fields can be extended to vector fields:

– A/2  =  radial, spheroidal, toroidal spectral indices (3x3 symmetric positive-definite matrix)

– K  = radial, spheroidal, toroidal cutoff degrees (3x3 symmetric positive-definite matrix)

– Σ  = radial, spheroidal, toroidal standard deviations (3x3 symmetric positive-definite matrix)

• If A, K and Σ are diagonal, then:
– The (Cn) matrices are diagonal.    →      No correlations between the radial, spheroidal and toroidal components of the field.

–

– C(ψ) is also diagonal. →      No correlations between the U, V, R components of the field.

– The radial component of the field can be treated independently as a scalar field.
(This is why only tangential vector fields are shown in the next slide.)
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‘(r,θ,λ) → (R,S,T)’ differential operator vector white noise on the sphere
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• U/V/R flicker noise correlations estimated for
> 12,000 pairs of GNSS station position time series
– PPP time series from Nevada Geodetic Laboratory

– See processing details in Gobron et al. (EGU23-3399)

• Long-range (> 50 km) correlations are well
described by the previous SPDE-based model…
– Different short-range correlation regime not shown here

– See Gobron et al. (EGU23-3399)

• …plus extra variance at lowest (≤ 2) degrees.
– Extra variance at degrees 0 and 1 may be explained

by errors in alignment to reference frame.

– Extra variance at degree 2 is puzzling…

• White noise in GNSS station position time series
has different spatial correlation regimes.
– See Gobron et al. (EGU23-3399)
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• A mathematical framework was set up to describe random isotropic vector fields on the sphere.
– Their covariance is appropriately described in the rotationally invariant UVR frame.

(Not in the geocentric XYZ frame, nor in the topocentric East/North/Up frame.)

– They have a spectral representation in the vector spherical harmonic domain.

– Their covariance C(ψ) and angular power spectrum (Cn) are linked through the integral transform on slide 13.

• This framework can be used to model, e.g., the spatial correlations of the 3D stochastic variations
in GNSS station position time series, with potential applications in:
– offset detection (Gazeaux et al. 2015),

– velocity estimation (Benoist et al. 2020),

– spatial filtering,

– error budgets for GNSS velocity fields, plate rotation poles, strain maps…

• Applications may also be found in other domains involving vector fields on a sphere, e.g.:
– winds,

– ocean currents,

– magnetic anomalies,

– etc.
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