Modeling random

 isotropic vector fields on the spherePaul Rebischung, Kevin Gobron

Motivation

- The stochastic variations (a.k.a. noise) in GNSS station position time series are temporally \& spatially correlated.
- Temporal correlations are well studied and routinely accounted for in GNSS time series analysis.
- A 'white + flicker' noise model is usually appropriate and employed.
- Spatial correlations as less well characterized and often ignored, while
 their consideration could improve:
- offset detection (Gazeaux et al. 2015),
- velocity estimation (Benoist et al. 2020),
- spatial filtering,
- error budgets for GNSS velocity fields, plate rotation poles, strain maps...

Motivation

- The stochastic variations (a.k.a. noise) in GNSS station position time series are temporally \& spatially correlated.
- Temporal correlations are well studied and routinely accounted for in GNSS time series analysis.
- A 'white + flicker' noise model is usually appropriate and employed.
- Spatial correlations as less well characterized and often ignored, while their consideration could improve:
- offset detection (Gazeaux et al. 2015),
- velocity estimation (Benoist et al. 2020),
- spatial filtering,
- error budgets for GNSS velocity fields, plate rotation poles, strain maps...

Random isotropic scalar fields on the sphere

- The theory of random scalar fields on the sphere is well established.
- \quad See for instance the extensive textbook by Marinucci \& Peccati (2011).
- Many recent developments have been motivated by the study of the Cosmological Microwave Background.
- A random scalar field on the sphere $f(\theta, \lambda)$ is said to be (weakly) isotropic if, for any rotation R :
$-\quad E[f(R(\theta, \lambda))]=E[f(\theta, \lambda)]$
(Its expected value is rotationally invariant.)
$-\quad \operatorname{cov}\left[f(R(\theta, \lambda)), f\left(R\left(\theta^{\prime}, \lambda^{\prime}\right)\right)\right]=\operatorname{cov}\left[f(\theta, \lambda), f\left(\theta^{\prime}, \lambda^{\prime}\right)\right]$ (Its covariance is rotationally invariant.)

- Isotropy implies:
- $\quad E[f(\theta, \lambda)]=\mu$
(The expected value is constant over the sphere.)
- $\operatorname{cov}\left[f(\theta, \lambda), f\left(\theta^{\prime}, \lambda^{\prime}\right)\right]=c(\psi) \quad$ (The covariance only depends on the distance between two points.)
- Note that $c(\psi)$ needs to satisfy certain conditions to be admissible as a covariance function.

Random isotropic scalar fields on the sphere

- A random isotropic scalar field on the sphere has the following spectral decomposition:
$\boldsymbol{f}(\boldsymbol{\theta}, \boldsymbol{\lambda})=\mu+\sum_{\mathrm{n}=0}^{\infty} \sum_{m=-n}^{n} \mathbf{f}_{\mathrm{n}, \mathrm{m}} \mathbf{Y}_{\mathrm{n}, \mathrm{m}}(\boldsymbol{\theta}, \boldsymbol{\lambda}) \quad$ with

$$
f_{n, m}=\iint(f(\theta, \lambda)-\mu) \cdot \bar{Y}_{n, m}(\theta, \lambda) \sin \theta d \theta d \lambda
$$

- $\quad Y_{n, m}=$ spherical harmonic of degree n, order m
- $\quad f_{n, m}=$ random variable
(complex, orthonormalized, with Condon-Shortley phase factor)
(spherical harmonic coefficient of the random field)
- The $f_{n, m}$ coefficients satisfy:
- $E\left[f_{n, m}\right]=0$
- $\quad f_{n,-m}=(-1)^{m} \bar{f}_{n, m} \quad$ (since $f(\theta, \lambda)$ is real and $\left.\mathrm{Y}_{n,-m}=(-1)^{m} \bar{Y}_{n, m}\right)$
- $\operatorname{cov}\left[f_{n, m}, f_{n^{\prime}, m^{\prime}}\right]=\delta_{n, n^{\prime}} \delta_{m, m^{\prime}} C_{n} \quad$ (They are pairwise uncorrelated, and their variance depends only on the degree n.)
- If $f(\theta, \lambda)$ is gaussian, the $f_{n, m}$ coefficients of non-negative orders are not only uncorrelated, but also independent.
- The sequence $\left(C_{n}\right)_{0 \leq n \leq \infty}$ is called the angular power spectrum of the field.
- It describes how the variance of the field is distributed across spherical harmonic degrees, i.e., spatial wavelengths.
- Indeed: $\operatorname{var}[f(\theta, \lambda)]=\sum_{n=0}^{\infty} \frac{2 n+1}{4 \pi} C_{n}$

Random isotropic scalar fields on the sphere

- The covariance function $c(\psi)$ and the angular power spectrum $\left(C_{n}\right)$ of a random isotropic scalar field on the sphere are linked through the Legendre transform:

$$
\operatorname{cov}\left[f(\theta, \lambda), f\left(\theta^{\prime}, \lambda^{\prime}\right)\right]=c(\psi)=\sum_{n=0}^{\infty} \frac{2 n+1}{4 \pi} C_{n} \cdot P_{n}(\cos \psi) \quad C_{n}=2 \pi \int_{0}^{\pi} c(\psi) P_{n}(\cos \psi) \sin \psi d \psi
$$

- This result provides the link between the spatial and spectral representations of a random isotropic scalar field on the sphere.
- It is analogous to the Wiener-Khinchin theorem for a stationary random process (of time), which states that its autocovariance and power spectral density are linked through the Fourier transform.
- It also provides a necessary and sufficient condition for $c(\psi)$ to be admissible as a covariance function: the coefficients $\left(C_{n}\right)$ of its Legendre transform need to be positive.

Random isotropic scalar fields on the sphere

- Some analytical models:

Covariance function	Angular power spectrum	Samples	
	$C_{n}=4 \pi(1-\rho) \rho^{n} /(2 n+1)$	$\rho=0.8$	$\rho=0.97$
$c(\psi)=\exp (\lambda(\cos \psi-1))$			

[^0]
Random isotropic scalar fields on the sphere

- Some more analytical models:

Covariance function	Angular power spectrum	Samples	
$c(\psi)=\exp (\lambda(\cos \psi-1)) \cdot J_{0}(\lambda \sin \psi)$	$C_{n}=4 \pi \exp (-\lambda) \lambda^{n} /((2 n+1) n!)$	$\lambda=5$	$\lambda=50$
$c(\psi)=\exp (-\nu \psi)$	See Lantujoul et al. (2019)	$v=4$	

Random isotropic scalar fields on the sphere

- A versatile model defined through a stochastic partial differential equation (SPDE):

$$
\left(\kappa^{2}-\underset{\nwarrow}{\Delta}\right)^{\alpha / 2} \cdot f(\theta, \lambda)=\sigma \cdot \mathbf{w}(\theta, \lambda) \quad \Rightarrow \quad C_{n}=\sigma^{2} /\left(\kappa^{2}+n(n+1)\right)^{\alpha}
$$

spherical Laplace operator
white noise on the sphere

- Angular power spectrum is flat (white) at low degrees, then follows a power-law.
- $\quad \alpha / 2=$ spectral index of the power-law
- \quad к = cutoff degree

- No analytical expression for the covariance
- Analogous to the generalized Gauss-Markov (GGM) process of time (Langbein, 2004)

Random isotropic vector fields on the sphere

- A random vector field on the sphere $\vec{f}(\theta, \lambda)$ is said to be (weakly) isotropic if, for any rotation R :
- $\quad E[\vec{f}(R(\theta, \lambda))]=E[R(\vec{f}(\theta, \lambda))]$
$-\quad \operatorname{cov}\left[\vec{f}(R(\theta, \lambda)), \vec{f}\left(R\left(\theta^{\prime}, \lambda^{\prime}\right)\right)\right]=\operatorname{cov}\left[\mathbf{R}(\vec{f}(\theta, \lambda)), R\left(\vec{f}\left(\theta^{\prime}, \lambda^{\prime}\right)\right]\right]$
- i.e., if its mean and covariance are invariant under rotations of the sphere simultaneously with the coordinate system.
- Isotropy implies:

$$
\begin{gathered}
{\left[\begin{array}{c}
f_{r}(\theta, \lambda) \\
f_{\theta}(\theta, \lambda) \\
f_{\lambda}(\theta, \lambda)
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{\mu} \\
0 \\
0
\end{array}\right] \quad \operatorname{cov}\left[\left[\begin{array}{c}
f_{u}(\theta, \lambda) \\
f_{v}(\theta, \lambda) \\
f_{r}(\theta, \lambda)
\end{array}\right],\left[\begin{array}{c}
f_{u^{\prime}}\left(\theta^{\prime}, \lambda^{\prime}\right) \\
f_{v^{\prime}}\left(\theta^{\prime}, \lambda^{\prime}\right) \\
\mathbf{f}_{r^{\prime}}\left(\theta^{\prime}, \lambda^{\prime}\right)
\end{array}\right]\right]=\left[\begin{array}{ccc}
\mathbf{c}_{\mathrm{uu}}(\psi) & \mathbf{c}_{\mathrm{uv}}(\psi) & \mathbf{c}_{\mathrm{ur}}(\psi) \\
\mathbf{c}_{\mathrm{uv}}(\psi) & \mathbf{c}_{\mathrm{vv}}(\psi) & \mathbf{c}_{\mathrm{vr}}(\psi) \\
-\mathbf{c}_{\mathrm{ur}}(\psi) & -\mathbf{c}_{\mathrm{vr}}(\psi) & \mathbf{c}_{\mathrm{rr}}(\psi)
\end{array}\right]=\mathbf{C}(\psi)} \\
\begin{array}{l}
\text { The covariance of the field components in the UVR frame } \\
\text { only depends on the distance between pairs of points. }
\end{array}
\end{gathered}
$$

Besides, for a given point, and a pair of antipodal points:

$$
\operatorname{var}\left[\begin{array}{c}
f_{r}(\theta, \lambda) \\
f_{f}(\theta, \lambda) \\
f_{\lambda}(\theta, \lambda)
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{r}^{2} & 0 & 0 \\
0 & \sigma_{t}^{2} & 0 \\
0 & 0 & \sigma_{t}^{2}
\end{array}\right]
$$

$$
\operatorname{cov}\left[\left[\begin{array}{l}
f_{r}(\theta, \lambda) \\
f_{\theta}(\theta, \lambda) \\
f_{\lambda}(\theta, \lambda)
\end{array}\right],\left[\begin{array}{l}
f_{r}(\pi-\theta, \pi+\lambda) \\
f_{\theta}(\pi-\theta, \pi+\lambda) \\
f_{\lambda}(\pi-\theta, \pi+\lambda)
\end{array}\right]\right]=\left[\begin{array}{ccc}
\gamma_{r} & 0 & 0 \\
0 & \gamma_{t} & 0 \\
0 & 0 & -\gamma_{\mathrm{t}}
\end{array}\right]
$$

Random isotropic vector fields on the sphere

- A random isotropic vector field on the sphere has the following spectral decomposition:
$\overrightarrow{\mathbf{f}}(\boldsymbol{\theta}, \boldsymbol{\lambda})=\mu \overrightarrow{\mathbf{e}}_{\mathrm{r}}+\sum_{\mathrm{n}=0}^{\infty} \sum_{m=-n}^{n} \mathbf{r}_{\mathrm{n}, \mathrm{m}} \overrightarrow{\mathbf{R}}_{\mathrm{n}, \mathrm{m}}(\boldsymbol{\theta}, \lambda)+\mathbf{s}_{\mathrm{n}, \mathrm{m}} \overrightarrow{\mathbf{S}}_{\mathrm{n}, \mathrm{m}}(\boldsymbol{\theta}, \boldsymbol{\lambda})+\mathbf{t}_{\mathrm{n}, \mathrm{m}} \overrightarrow{\mathbf{T}}_{\mathrm{n}, \mathrm{m}}(\boldsymbol{\theta}, \lambda)$
- $\quad \vec{R}_{n, m}, \vec{S}_{n, m}, \overrightarrow{\mathrm{~T}}_{\mathrm{n}, \mathrm{m}}=$ vector spherical harmonics = basis for vector fields on the sphere
- $\quad \vec{R}_{n, m}(\theta, \lambda)=Y_{n, m}(\theta, \lambda) \cdot \vec{e}_{r} \quad=$ basis for radial vector fields
- $\quad \overrightarrow{\mathbf{S}}_{\mathrm{n}, \mathrm{m}}(\theta, \lambda)=\vec{\nabla} \boldsymbol{Y}_{\mathrm{n}, \mathrm{m}}(\theta, \lambda) / \sqrt{\mathrm{n}(\mathrm{n}+1)} \quad$ = basis for tangential, curl-free (a.k.a spheroidal) vector fields
- $\quad \vec{T}_{n, m}(\theta, \lambda)=\vec{\nabla} \times \vec{R}_{n, m}(\theta, \lambda) / \sqrt{n(n+1)}=$ basis for tangential, divergence-free (a.k.a toroidal) vector fields

- $\quad r_{n, m}, s_{n, m}, t_{n, m}=$ spherical harmonic coefficient of the random vector fields $=$ random variables
$r_{n, m}=\iint\left(\vec{f}(\theta, \lambda)-\mu \vec{e}_{r}\right) \cdot \overline{\vec{R}}_{n, m}(\theta, \lambda) \sin \theta d \theta d \lambda \quad s_{n, m}=\iint\left(\vec{f}(\theta, \lambda)-\mu \vec{e}_{r}\right) \cdot \overline{\vec{s}}_{n, m}(\theta, \lambda) \sin \theta d \theta d \lambda \quad t_{n, m}=\iint\left(\vec{f}(\theta, \lambda)-\mu \vec{e}_{r}\right) \cdot \overline{\vec{T}}_{n, m}(\theta, \lambda) \sin \theta d \theta d \lambda$

Random isotropic vector fields on the sphere

- The $r_{n, m}, s_{n, m}, t_{n, m}$ coefficient triplets satisfy:
- $E\left[r_{n, m}, s_{n, m}, t_{n, m}\right]=[0,0,0]$
- $\quad\left[r_{n,-m}, s_{n,-m}, t_{n,-m}\right]=(-1)^{m}\left[\bar{r}_{n, m}, \bar{s}_{n, m}, \bar{t}_{n, m}\right]$

- If $\vec{f}(\theta, \lambda)$ is gaussian, the coefficient triplets of non-negative orders are not only uncorrelated, but also independent.
- The sequences $\left(c_{n}^{r r}\right)_{0 \leq n \leq \infty},\left(c_{n}^{s s}\right)_{0 \leq n \leq \infty},\left(c_{n}^{\mathrm{tt}}\right)_{0 \leq n \leq \infty}$ can be called the radial, spheroidal $\&$ toroidal angular power spectra of the vector field.
- They describe how the variance of the field is distributed across spherical harmonic degrees (i.e., spatial wavelengths) and across its radial, spheroidal and toroidal components.
- Indeed: $\quad \operatorname{var}\left[f_{r}(\theta, \lambda)\right]=\sigma_{r}^{2}=\sum_{n=0}^{\infty} \frac{2 n+1}{4 \pi} c_{n}^{\pi r} \quad \operatorname{var}\left[f_{\theta}(\theta, \lambda)\right]=\operatorname{var}\left[f_{\lambda}(\theta, \lambda)\right]=\sigma_{t}^{2}=\sum_{n=0}^{\infty} \frac{2 n+1}{8 \pi}\left(c_{n}^{\text {ss }}+c_{n}^{\text {tr }}\right)$

Random isotropic vector fields on the sphere

- The covariance function $C(\Psi)$ and the angular power spectrum $\left(C_{n}\right)$ of a random isotropic vector field on the sphere are linked via the following transform:

$$
\begin{aligned}
& c_{r r}(\psi)=\sum_{n=0}^{\infty} \frac{2 n+1}{4 \pi} c_{n}^{r r} P_{0,0}^{n}(\cos \psi) \\
& c_{n}^{r r}=2 \pi \int_{0}^{\pi} c_{r r}(\psi) \cdot P_{0,0}^{n}(\cos \psi) \cdot \sin \psi d \psi \\
& \mathbf{c}_{\mathrm{ur}}(\psi)=-\sum_{\mathrm{n}=0}^{\infty} \frac{\mathbf{2 n}+1}{4 \pi} \mathbf{c}_{\mathrm{n}}^{\text {rs }} \mathbf{P}_{1,0}^{\mathrm{n}}(\cos \psi) \\
& c_{n}^{\text {rs }}=-2 \pi \int_{0}^{\pi} c_{u r}(\psi) \cdot P_{1,0}^{n}(\cos \psi) \cdot \sin \psi d \psi \\
& c_{\mathrm{vr}}(\psi)=\sum_{\mathrm{n}=0}^{\infty} \frac{2 \mathrm{n}+1}{4 \pi} \mathbf{c}_{\mathrm{n}}^{\mathrm{rt}} \mathrm{P}_{1,0}^{\mathrm{n}}(\cos \psi) \\
& c_{n}^{r t}=2 \pi \int_{0}^{\pi} c_{v r}(\psi) \cdot P_{1,0}^{n}(\cos \psi) \cdot \sin \psi d \psi \\
& c_{u u}(\psi)+c_{v v}(\psi)=\sum_{n=0}^{\infty} \frac{2 n+1}{4 \pi}\left(c_{n}^{t t}+c_{n}^{s s}\right) P_{1,1}^{n}(\cos \psi) \\
& c_{n}^{\mathrm{tt}}+\mathrm{C}_{\mathrm{n}}^{\mathrm{ss}}=2 \pi \int_{0}^{\pi}\left(\mathrm{c}_{\mathrm{uu}}(\psi)+\mathrm{c}_{\mathrm{vv}}(\psi)\right) \cdot \mathrm{P}_{1,1}^{\mathrm{n}}(\cos \psi) \cdot \sin \psi \mathrm{d} \psi \\
& c_{u u}(\psi)-c_{v v}(\psi)=\sum_{n=0}^{\infty} \frac{2 n+1}{4 \pi}\left(c_{n}^{\mathrm{tt}}-c_{n}^{5 s}\right) P_{1,-1}^{n}(\cos \psi) \\
& \mathbf{c}_{\mathrm{n}}^{\mathrm{tt}}-\mathbf{c}_{\mathrm{n}}^{\text {ss }}=2 \pi \int_{0}^{\pi}\left(\mathrm{c}_{\mathrm{uu}}(\psi)-\mathrm{c}_{\mathrm{vv}}(\psi)\right) \cdot P_{1,-1}^{\mathrm{n}}(\cos \psi) \cdot \sin \psi d \psi \\
& \mathrm{c}_{\mathrm{uv}}(\psi)=\sum_{\mathrm{n}=0}^{\infty} \frac{2 \mathrm{n}+1}{4 \pi} \mathrm{c}_{\mathrm{n}}^{\text {st }} \mathrm{P}_{1,-1}^{\mathrm{n}}(\cos \psi) \\
& c_{n}^{s t}=2 \pi \int_{0}^{\pi} c_{u v}(\psi) \cdot P_{1,-1}^{n}(\cos \psi) \cdot \sin \psi d \psi
\end{aligned}
$$

- The $P_{m, m^{\prime}}^{n}$ are Gel'fand et al. (1958)'s generalized spherical functions. They are related to the Jacobi polynomials.

$$
\begin{array}{ccc}
\begin{array}{c}
P_{0,0}^{n}(x)=P_{n}(x) \\
\uparrow
\end{array} & P_{1,0}^{n}(x)=P_{n}^{1}(x) / \sqrt{n(n+1)} & P_{1,1}^{n}(x)=\left(\sqrt{1-x^{2}} d P_{n}^{1} / d x-P_{n}^{1}(x) / \sqrt{1-x^{2}}\right) /(n(n+1)) \\
& \text { Associated Legendre polynomial } & P_{1,-1}^{n}(x)=-\left(\sqrt{1-x^{2}} d P_{n}^{1} / d x+P_{n}^{1}(x) / \sqrt{1-x^{2}}\right) /(n(n+1))
\end{array}
$$

Random isotropic vector fields on the sphere

- There is no (known) analytical \{covariance/spectrum\} couple for the tangential part.
- But the SPDE-based model previously introduced for scalar fields can be extended to vector fields: $\left(K^{2}-\Delta \cdot I\right)^{A / 2} \cdot \mathbf{D} \cdot \vec{f}(\theta, \lambda)=\Sigma \cdot D \cdot \overrightarrow{\mathbf{w}}(\theta, \lambda) \quad \Rightarrow \quad C_{n}=\left(K^{2}+n(n+1) \cdot I\right)^{-A / 2} \Sigma^{2}\left(K^{2}+n(n+1) \cdot I\right)^{-A / 2}$
' $(r, \theta, \lambda) \rightarrow(R, S, T)$ ' differential operato
vector white noise on the sphere
- $\quad \mathrm{A} / \mathbf{2}=$ radial, spheroidal, toroidal spectral indices
(3×3 symmetric positive-definite matrix)
- $\quad \mathrm{K}=$ radial, spheroidal, toroidal cutoff degrees
(3×3 symmetric positive-definite matrix)
- $\quad \Sigma=$ radial, spheroidal, toroidal standard deviations
(3×3 symmetric positive-definite matrix)
- If A, K and Σ are diagonal, then:
- The $\left(C_{n}\right)$ matrices are diagonal. $\quad \rightarrow \quad$ No correlations between the radial, spheroidal and toroidal components of the field.
- $\quad \mathrm{c}_{\mathrm{n}}^{\mathrm{Ir}}=\sigma_{\mathrm{r}}^{2} /\left(\kappa_{\mathrm{r}}^{2}+\mathrm{n}(\mathrm{n}+1)\right)^{\alpha_{r}} \quad \mathrm{c}_{\mathrm{n}}^{\mathrm{ss}}=\sigma_{\mathrm{s}}^{2} /\left(\kappa_{\mathrm{s}}^{2}+\mathrm{n}(\mathrm{n}+1)\right)^{\alpha_{s}} \quad \mathrm{c}_{\mathrm{n}}^{\mathrm{tt}}=\sigma_{\mathrm{t}}^{2} /\left(\kappa_{\mathrm{t}}^{2}+\mathrm{n}(\mathrm{n}+1)\right)^{\alpha_{\mathrm{t}}}$
- $C(\psi)$ is also diagonal. $\quad \rightarrow \quad$ No correlations between the U, V, R components of the field.
- The radial component of the field can be treated independently as a scalar field.
(This is why only tangential vector fields are shown in the next slide.)

Random isotropic vector fields on the sphere

	U \& V correlation functions	$\sigma_{s}{ }^{2}=10 ; \sigma_{t}{ }^{2}=1$	$\sigma_{s}{ }^{2}=1 ; \sigma_{t}{ }^{2}=1$	$\sigma_{s}{ }^{2}=1 ; \sigma_{t}{ }^{2}=10$

Application

- U/V/R flicker noise correlations estimated for > 12,000 pairs of GNSS station position time series
- PPP time series from Nevada Geodetic Laboratory
- \quad See processing details in Gobron et al. (EGU23-3399)
- Long-range (> $\mathbf{5 0} \mathbf{~ k m}$) correlations are well described by the previous SPDE-based model...
- Different short-range correlation regime not shown here
- See Gobron et al. (EGU23-3399)
- ...plus extra variance at lowest (≤ 2) degrees.
- Extra variance at degrees 0 and 1 may be explained by errors in alignment to reference frame.
- Extra variance at degree $\mathbf{2}$ is puzzling...
- White noise in GNSS station position time series has different spatial correlation regimes.
- \quad See Gobron et al. (EGU23-3399)

Summary

- A mathematical framework was set up to describe random isotropic vector fields on the sphere.
- \quad Their covariance is appropriately described in the rotationally invariant UVR frame.
(Not in the geocentric XYZ frame, nor in the topocentric East/North/Up frame.)
- They have a spectral representation in the vector spherical harmonic domain.
- Their covariance $C(\Psi)$ and angular power spectrum $\left(C_{n}\right)$ are linked through the integral transform on slide 13.
- This framework can be used to model, e.g., the spatial correlations of the 3D stochastic variations in GNSS station position time series, with potential applications in:
- offset detection (Gazeaux et al. 2015),
- velocity estimation (Benoist et al. 2020),
- spatial filtering,
- error budgets for GNSS velocity fields, plate rotation poles, strain maps...
- Applications may also be found in other domains involving vector fields on a sphere, e.g.:
- winds,
- ocean currents,
- magnetic anomalies,
- etc.

References

- Benoist C, Collilieux X, Rebischung P, Altamimi Z, Jamet O, Métivier L, Chanard K, Bel L (2020) Accounting for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities, Journal of Geodynamics, https://doi.org/10.1016/j.jog.2020.101693
- Gazeaux J, Lebarbier E, Collilieux X, Métivier L (2015) Joint segmentation of multiple GPS coordinate series, Journal de la société française de statistique
- Gel'fand IM, Minlos RA, Shapiro ZY (1963) Representations of the rotation and Lorentz groups and their applications, Pergamon Press, Oxford
- Gobron K, Rebischung P, Barnéoud J, Chanard K, Altamimi Z (2023) Toward a realistic spatio-temporal description of GNSS station position time series, EGU23-3399
- Lantuéjoul C, Freulon X, Renard D (2019) Spectral simulation of isotropic gaussian random fields on a sphere, Mathematical Geosciences, https://doi.org/10.1007/s11004-019-09799-4
- Leonenko N, Sakhno L (2012) On spectral representations of tensor random fields on the sphere, Stochastic Analysis and Applications, https://doi.org/10.1080/07362994.2012.628912
- Marinucci D, Peccati G (2011) Random fields on the sphere: representation, limit theorems and cosmological applications, Cambridge University Press, www.cambridge.org/9780521175616

[^0]: I = modified Bessel function of the first kind

