Disentangling diabatic and adiabatic drivers during the life cycle of a jet streak – A Lagrangian PV-gradient perspective

Mona Bukenberger, Stefan Rüdisühli, Sebastian Schemm, D-USYS, ETH Zürich Thursday, September 8th 2022

ENS Neeting 2022

The jet stream

jet streaks

Diabatic-adiabatic coupling

Future evolution and mechanistic understanding?

- PV@320K on 01 Jan. 2022, 12:00 UTC
- Two regions with large PV anomalies

pvi 8.5 8 7.5 6.6 6.3 б 5.1 5.4 5.1 0.3

Jet aligns with regions of large **PV** anomalies

Hoskins and McIntyre, 1985 Thorpe and Bishop, 1989

Mona Bukenberger

etc.

Principle of PV inversion: PV anomalies \Leftrightarrow Flow anomalies

Hoskins and McIntyre, 1985 Thorpe and Bishop, 1989

Mona Bukenberger

etc.

Principle of PV inversion: PV anomalies \Leftrightarrow Flow anomalies

Large PV gradients \Leftrightarrow strong flow

Hoskins and McIntyre, 1985 Thorpe and Bishop, 1989

Mona Bukenberger

etc.

Principle of PV inversion: PV anomalies \Leftrightarrow Flow anomalies

Large PV gradients \Leftrightarrow strong flow

On large scales and for quasi-geostrophic flow: ~ U, related to horizontal flow, stratospheric displacement

ETHzürich

Davies and Rossa, 1998

Mona Bukenberger

Martius et al, 2009

PV gradients and diabetic-adiabatic coupling

 $\frac{D}{Dt}(\text{PV}) = \frac{1}{\rho} \left(\nabla \times \vec{F} \cdot \nabla \theta + \vec{\eta} \cdot \nabla \dot{\theta} \right)$

PV conserved for adiabatic and frictionless motion

> **PV tendency :** diabatic-adiabatic coupling

$\left\| \nabla_{\theta} \ln \mathrm{PV} \right\| \sim \mathrm{U}$

PV-gradient related to horizontal wind speed

> **PV** gradient: **Jet** (streaks)

PV gradients and diabetic-adiabatic coupling

 $\frac{D}{Dt}(\text{PV}) = \frac{1}{\rho} \left(\nabla \times \vec{F} \cdot \nabla \theta + \vec{\eta} \cdot \nabla \dot{\theta} \right)$

PV conserved for adiabatic and frictionless motion

> **PV tendency :** diabatic-adiabatic coupling

$\left\| \nabla_{\theta} \ln PV \right\| \sim U$

PV-gradient related to horizontal wind speed

> **PV gradient: Jet** (streaks)

Use PV gradient tendency to analyze diabatic influence on jet streak life cycles

The Lagrangian perspective

$\frac{D}{Dt} \nabla_{\theta} P V_{\theta} = \nabla_{\theta} \left(\frac{D}{Dt} P V_{\theta} \right) - J \cdot \nabla_{\theta} P V_{\theta}$

caused by diabatic processes

The Lagrangian perspective

$\frac{D}{Dt} \parallel \nabla_{\theta} P V_{\theta} \parallel =$

 $\delta \| \nabla_{\theta} P V_{\theta} \| = \delta P V G_{ADIA} + \delta P V G_{DIAB,dir} + \delta P V G_{DIAB,ind}$

$$\left\langle \frac{D}{Dt} \left(\nabla_{\theta} P V_{\theta} \right), \nabla_{\theta} P V_{\theta} \right\rangle$$
$$\left\| \nabla_{\theta} P V_{\theta} \right\|$$

Decomposition of total PV gradient change:

Simulation

- COSMO v6.0 (GPU) 1.1km grid(2601x2441x80), 7.5 s time step, fully explicit convection
- Eastern North Atlantic (NAWDEX), 20-23 Sep. 2016
- 235,128 Online trajectories started every 3 h (20x) on 27.5 km grid (101x97x24)

Case Studies

22 Sep. 2016, 00:00 UTC

Top: precipitation, sea level pressure, 500 hPa height;

23 Sep. 2016, 00:00 UTC

23 Sep. 2016, 18:00 UTC

bottom: PV@320K, UV > 35 m/s@320 K

23 Sep. 2016, 18:00 UTC 22 Sep. 2016, 00:00 UTC 23 Sep. 2016, 00:00 UTC

Simulation

COSMO v6 0 (GPLI) 1 1km

started every 3 n (20x) on 27.5 km grid (101x97x24)

Case Studies

High-resolution data ⇒ lowpass filtering required at every step

Results – case study 22.9.2016, 00:00UTC

• Overall small PV changes • δPV increases from tropospheric towards stratospheric side of jet streak

Large-scale fields

PV gradient change

All Figures Contours: UV > 35 m/s@320 K

- Positive at jet streak entrance
- Negative at exit \bullet

Jet streak almost stationary, but PV gradient change large

Results – case study 23.9.2016, 00:00UTC

- Jet streak A: pattern similar as for first case study
- Jet streak B:
 - Larger absolute δPV \bullet
 - Dipole in δPV at tropospheric boundary
 - \Rightarrow larger diabatic influence on PV gradient

PV gradient change

All Figures Contours: UV > 35 m/s@320 K

> • Jet streak B: Positive changes everywhere \Rightarrow Intensification fingerprint

• Jet streak A: Pattern as before, smaller absolute values

All Figures Contours: UV > 35 m/s@320 K

- Again dominated by adiabatic deformation
- But: smaller absolute values

• Jet streak B:

- Only positive changes
- Again dominated by adiabatic deformation

All Figures Contours: UV > 35 m/s@320 K

- Again dominated by adiabatic deformation
- But: smaller absolute values
- Jet streak B:
 - Only positive changes
 - Again dominated by adiabatic deformation

All Figures Contours: UV > 35 m/s@320 K

Conclusion

Methods:

Lagrangian framework for link between PV gradient and large-scale flow

Conclusion

Methods:

Lagrangian framework for link between PV gradient and large-scale flow

• First case:

Adiabatic deformation dominates PV gradient

Conclusion

• Methods:

Lagrangian framework for link between PV gradient and large-scale flow

• First case:

Adiabatic deformation dominates PV gradient

Second case:

Diabatic processes important and of the same order of magnitude as adiabatic deformation

(d)

Limitations

- Large scale approximation \Rightarrow Lowpass filtering required
- Complete decomposition requires sufficient air parcel coverage

Limitations

- Large scale approximation \Rightarrow Lowpass filtering required
- Complete decomposition requires sufficient air parcel coverage

Outlook

- Identify jet streaks as object
- Study evolution of extreme events and trends under climate change

References

- Davies, H. C. and Rossa, A. M. (1998)
- Martius, O., Schwierz, C. and Davies, H. C. (2009) \bullet Tropopause-level waveguides, Journal of the atmospheric sciences
- Thorpe and Bishop (1985), Potential vorticity and the electrostatics analogy: Ertel - Rossby formulation, Quarterly Journal of the Royal Meteorological Society
- Hoskins and McIntyre (1985), \bullet Journal of the Royal Meteorological Society

PV frontogenesis and upper-tropospheric fronts, Monthly Weather Review

On the use and significance of isentropic potential vorticity maps, Quarterly

