Crystallographic preferred orientations of talc and chloritoid and implications for seismic anisotropy in subduction zones
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LPOs of talc were measured by using JEOL JSM-6380 SEM with HKL EBSD at Seoul al., 2021).

National University. Seismic anisotropy and P-wave radial anisotropy were calculated as:
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CPOs of polycrystalline talc and chloritoid were measured in Makbal UHP schist samples by EBSD
analysis. We found strong CPOs of both talc and chloritoid showing a strong alignment of [001] axes
subnormal to the foliation and a girdle distribution of [100] axes and (010) poles subparallel to the
foliation. Results of seismic anisotropies of those minerals suggest that strong CPOs of talc can
contribute to the production of strong P-wave anisotropy, and CPOs of both chloritoid and talc can
Influence strong trench-parallel S-wave anisotropies in subduction zones.
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Summary

RA = (Vph — Vpv) / {{(Vph + Vpv) /2}

where Vph iIs the average velocity of horizontally propagating P—waves and Vpv Is the
vertically propagating P—wave velocity.




