Using a hydroacoustic method to establish continuous time series of suspended sand concentration and grain size in the Isère River, France

Jessica Laible, Benoît Camenen, Jérôme Le Coz, Guillaume Dramais, Gilles Pierrefeu, François Lauters

Suspended sand

- Important spatial and temporal gradients
- Physical sampling time- and cost-consuming
- Difficult to measure continuously concentration and grain size

The presentation perception is 00579

Use a hydroacoustic method to establish time series of suspended sand concentration and grain size

Isère River, France

GM3.2 / PICO3a.3

Using a hydroacoustic method to establish continuous time series of suspended sand concentration and grain size in the Isère River, France

Time serie of suspended sand

- → Preliminary establishment of concentration and grain size time series
- \rightarrow Improvements of methodology necessary

GM3.2 / PICO3a.3

Theory

Active sonar

Based on the principle of sonar

and the Doppler effect

Backscatter B

- Dominated by sand
- If $S = \frac{C_{fines}}{C_{sand}}$ is high: contribution of fine sediments, too

Attenuation (α)

- Geometric distribution in space, viscosity of water (α_W) and due to sediments (α_{Sed})
- Dominated by fine sediments and high concentrations

Deployment of Acoustic Doppler Current Profilers (ADCPs)

Horizontal deployment:

Vertical deployment:

High spatial, but low

temporal resolution

Horizontal Acoustic Doppler Current Profilers (HADCPs)

High temporal, lower

- spatial resolution
- \rightarrow Applied in this study

Theory: Use α_{Sed} and \overline{B} to estimate the concentration and grain size

Concentration

Relate α_{Sed} with the concentration of silt-clay sediments and \overline{B} with the concentration of sand

Grain size

Attenuation caused by a particle depends on its size

Study area: Isère River

- French Alpine River
- Rich in suspended sediment, particularly sand
- Highly engineered (dikes, dams for hydro-power generation)
- \rightarrow Requires sediment management and knowledge on the suspended sand concentration and grain size

Sampling at Grenoble Campus

Dam flush, Beaumont-Monteux

Data: IGN

Applying a bi-frequential method

Following Topping & Wright (2016)

Step 1: Continuous HADCP measurements

Determination of α_{sed} and \overline{B}

Establishment of time series for both frequencies and α_{sed} and \overline{B}

the signal treatment

40

Raw data

Step 1: Regular solid gaugings

 \overline{C}_{sand} (g/l)

0.25

0.50

0.75

1.00

C_{fines} (g/l) ○ 0.78 ○ 0.84

• 0.96

• 0.90

Point sampling using US-P6, US-P72 and the Delft bottle

Information per sample:

- \rightarrow Sand and fine sediment concentration
- \rightarrow Grain size distribution

Depth (m) c

3

0

10

20

30

Distance (m)

Mean cross-sectional suspended sand concentration & total sand flux

300

Q (m³/s)

250

350

400

450

 \rightarrow Vertical and lateral integration

BD

P6

🔶 P72

10²

 10^{1}

100

150

200

⊅_{sand} (kg/s)

Mean cross-sectional sand grain size distribution

→ Following ISO 4363

Dramais, G., **Laible, J**., Le Coz, J., Calmel, B., Camenen, B., Topping, D.J., Santini, W., Pierrefeu, G. Methodology for River suspended-sand discharge-computation with uncertainty estimation, using water samples and high-resolution ADCP measurements (in prep)

40

50

60

Laible, J., Camenen, B., Le Coz, J., Pierrefeu, G., Mourier, B., Lauters, F., & Dramais, G. (2023). Comparison of grain size distribution measurements of sand-silt mixtures using laser diffraction systems. *Journal of Soils and Sediments*, 1-16

Step 2: Relate acoustic signal & concentration and grain size in the cross section

Relating C_{fines} with α_{sed}

 C_{fines} measured by US P6, US P72 and turbidity α_{sed} dominated by fine sediments

Relating C_{sand} with \overline{B}

 \overline{B} dominated by sands, but also influenced by high concentrations of fine sediments

→ Use only gaugings where $S = \frac{C_{fines}}{C_{sand}} < 2$ and D_{50} close (± 50 µm) to the reference $D_{50} = 200$ µm

Step 3: Establish sand concentration and grain size timeseries

Intermediate step: Single-frequency estimates of the sand concentration

Conclusion & perspectives

Conclusion

- Continuous deployment of 2 HADCPs for 18 months
- 21 solid gaugings under various hydrosedimentary conditions
- Good relations between the concentration of fine sediments and α_{sed} as well as the concentration of sand and \overline{B}
- Time series need to be improved

Perspectives

Do you have questions, remarks or a PostDoc offer? Jessica.laible@inrae.fr @laible_jessica

Variation of C_{sand} along the beam

Calculate α_{Sed} et \overline{B}

r

 α_w

В

 \overline{B}

Correct for interference

Instead of using the total beam:

- 1) Application of a bufferzone in front of the intersection
- 2) Exclude the non-linear area close to the transducer

