Oceanic and Atmospheric Feedbacks Associated with the Spreading of Pacific Coastal Niño Events

EGU General 2023

Key Points:

Coastal Niño Events can be purely generated by wind stress anomaly

The 2017 Coastal Niño Event

- Coastal heatwave with SST anomalies of up to 5K
- Lasted roughly 3 months
- Severe impacts on coastal regions (Rainfall, Flooding)
- Central equatorial Pacific did not show significant warming
- Different forcing mechanisms discussed in recent literature [e.g. *Peng et al. 2019*]

Which Mechanisms are involved in the evolution of Coastal Niño Events?

rectangles in A indicate Niño1+2 and Niño3.4 regions.

Results

- Events forced by entrainment anomalies
- Positive Cloud-SST-Feedback \rightarrow stronger in APR
- Strong Heat flux damping in JAN
- Re-strengthening of winds during -0.5 decay phases
- JAN Events damped away by heat flux alone
- APR Events by entrainment as important as heat fluxes

Fig 4: Entrainment (A), Ekman Pumping velocities (B) and alongshore wind stress (C) for different phases averaged for Niño1+2 region red: build-up, green: peak, blue: decay)

Daniel Rudloff¹ (drudloff@geomar.de), Joke Lübbecke¹ ¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Positive Cloud-SST-Feedback decreases heat flux damping

Fig 1: Sea surface temperature anomalies during February 2017 from NOAA OISST v2 (A, C) and time series of Niño1+2 and Niño3.4 SSTa in (B). The solid

Historical Simulations

sea surface temperature.

green bars peak phase and blue ones decay. Vertical bars denote the standard deviations.

Heat flux damping stronger for events in January/February

Re-strengthening of coastal winds ends coastal warming

> FOCI Model (ECHAM coupled with NEMO) \geq 3 model runs with historical forcing (1850 -2013) > Events with high ocean heat content (OHC) tend to develop into basin-wide warmings [Lübbecke et al. 2019]

AM

NDJF

JJASO

Partial Coupling Experiments

- years with low / high OHC

Fig3: Schematic for partial coupling method

- during late boreal spring

Outlook No clear spreading of the warm anomalies into the central Pacific in forced experiments \rightarrow Hypothesis: Only statistical connection between spreading and OHC due to higher effectiveness of equatorial Kelvin Waves

References: Lübbecke, Joke F., Daniel Rudloff, and Lothar Stramma. "Stand-alone eastern Pacific Coastal Warming events." Geophysical Research Letters 46.21 (2019): 12360-12367. Peng, Qihua, et al. "Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño." *Nature communications* 10.1 (2019): 298.

DFG Deutsche Forschungsgemeinschaft German Research Foundation

> 2-year long model experiments (partial coupling) ECHAM: 1.75° resolution, NEMO: 0.5° resolution Prescribed wind stress to force coastal warming > 40 day long forcing applied in JAN or APR for selected

Conclusion

Local wind stress anomaly can cause coastal warming similar to the 2017 event

Cloud-SST-Feedback stronger/more persistent

