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An established way for improving the accuracy of gridded satellite precipitation
products is to “correct” them by exploiting ground-based precipitation measurements,
together with machine and statistical learning algorithms. Such corrections are made in
regression settings, where the ground-based measurements are the dependent variable
and the satellite data are predictor variables. Comparisons of machine and statistical
learning algorithms in the direction of obtaining the most useful precipitation datasets
by performing such corrections are regularly conducted in the literature. Nonetheless, in
most of these comparisons, a small number of machine and statistical learning
algorithms are considered. Also, small geographical regions and limited time periods are
examined. Thus, the results provided tend to be of local importance and to not offer
more general guidance. To provide results that are generalizable, we compared eight
state-of-the-art machine and statistical learning algorithms in correcting satellite
precipitation data for the entire contiguous United States and for a 15-year period. We
used monthly data from the PERSIANN (Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks) gridded dataset and the Global Historical
Climatology Network monthly database, version 2 (GHCNm). Our results suggest that
extreme gradient boosting (XGBoost) and random forests are more accurate than the
remaining algorithms, which can be ordered as follows from the best to the worst ones:
Bayesian regularized feed-forward neural networks, multivariate adaptive polynomial
splines (poly-MARS), gradient boosting machines (gbm), multivariate adaptive
regression splines (MARS), feed-forward neural networks, linear regression.

This poster is based on Papacharalampous et al. (2023).

Computations made separately for each predictor set
o Total monthly precipitation data from:

a) the Global Historical Climatology Network monthly database, version 2
(GHCNm; Peterson and Vose 1997); and

b) daily precipitation data of the current operational PERSIANN (Precipitation
Estimation from Remotely Sensed Information using Artificial Neural
Networks) system.

o Elevation data from the Amazon Web Services (AWS) Terrain Tiles application.

This work was conducted in the context of the research project BETTER
RAIN (BEnefiTTing from machine lEarning algoRithms and concepts for
correcting satellite RAINfall products). This research project was supported
by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the
“3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers”
(Project Number: 7368).

Study Time scale Spatial scale Algorithms

He et al. (2016) Hourly South-western, central, 

north-eastern and south-eastern 

United States

Random forests

Meyer et al. (2016) Daily Germany Random forests, artificial neural networks,

support vector regression

Tao et al. (2016) Daily Central United States Deep learning
Yang et al. (2016) Daily Chile Quantile mapping
Baez-Villanueva 

et al. (2020)

Daily Chile Random forests

Chen et al. (2020a) Daily Dallas–Fort Worth 

in the United States

Deep learning

Chen et al. (2020b) Daily Xijiang basin in China Geographically weighted ridge regression
Rata et al. (2020) Annual Chéliff watershed in Algeria Kriging
Chen et al. (2021) Monthly Sichuan Province in China Artificial neural networks, geographically

weighted regression, kriging, random forests

Nguyen et al. (2021) Daily South Korea Random forests
Shen and Yong (2021) Annual China Gradient boosting decision trees, random forests,

support vector regression

Zhang et al. (2021) Daily China Artificial neural networks, extreme learning machines, 

random forests, support vector regression

Chen et al. (2022) Daily Coastal mountain region in the 

western United States

Deep learning

Fernandez-Palomino 

et al. (2022)

Daily Ecuador and Peru Random forests

Lin et al. (2022) Daily Three Gorges Reservoir 

area in China

Adaptive boosting decision trees,

decision trees, random forests

Yang et al. (2022) Daily Kelantan river 

basin in Malaysia

Deep learning

Zandi et al. (2022) Monthly Alborz and Zagros 

mountain ranges in Iran

Artificial neural networks, locally weighted linear 

regression, random forests, stacked generalization, 

support vector regression

Militino et al. (2023) Daily Navarre in Spain K-nearest neighbors, random forests,

artificial neural networks

o Grid points are the geographical 
locations with satellite data.

o Stations are the geographical 
locations with ground-based 
measurements.

o Distances 1−4 are the distances 
di, i = 1, 2, 3, 4.

o PERSIANN values 1−4 are the 
total monthly precipitation 
values at the grid points 1−4, 
respectively.

5. Relationships between variables

1 421 stations with data in 
the period 2001–2015

PERSIANN grid with data in 
the period 2001–2015

Mean relative improvements Mean rankings

Algorithms for spatial interpolation

o Linear regression (Hastie et al. 2009, pp 43–55)
o Multivariate adaptive regression splines (MARS; Friedman 1991, 1993)
o Multivariate adaptive polynomial splines (poly-MARS; Kooperberg et al. 1997, 

Stone et al. 1997)
o Random forests (Breiman 2001, Tyralis et al. 2019)
o Gradient boosting machines (gbm; Friedman 2001, Mayr et al. 2014, Tyralis and 

Papacharalampous 2021)
o Extreme gradient boosting (XGBoost; Chen and Guestrin 2016 , Tyralis and 

Papacharalampous 2021)
o Feed-forward neural networks (Ripley 1996, pp 143–180)
o Feed-forward neural networks with Bayesian regularization (MacKay 1992)

Variable importance metric

Random forests’ permutation importance

Evaluation metrics

Median squared error  rankings, mean relative improvements, mean rankings

Computations made collectively for all predictor sets

Mean relative improvements Mean rankings

The comparison is made in a five-fold cross-validation setting.

o Extreme gradient boosting (XGBoost) and random forests are the most
accurate algorithms.

o The former algorithm was found to be more accurate than the latter to a
small extent based on the majority of the scores.

o The remaining algorithms can be ordered from the best- to the worst-
performing as follows:

 feed-forward neural networks with Bayesian regularization;

 multivariate adaptive polynomial splines (poly-MARS);

 gradient boosting machines (gbm);

 multivariate adaptive regression splines (MARS);

 feed-forward neural networks; and

 linear regression.
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