

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation contes

SWE = Snow Water Equivalent [mm]

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

- Forests have a high spatial variability of snow and complicate remote sensing data acquisitions
- Snow models of all scales lack validation data of seasonal snow parameters
- Errors increase with forest cover for (passive optical) satellite snow products (e.g. Landsat 8 products)
- Temporally and spatially continous validation data for forested environments is needed

Motivation – Why LIDAR?

Machine Learning and LiDAR Snowheight Maps from UAVs Reveal Clusters of Snow Variability in a Sub-Alpine Forest

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

- Potential to map snow under forest canopy (Harder et al. 2020)
- Increasing Data Availability

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹ Jniversity of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation contest

ALL DE LE CAL

150 m

75

Study Site

- ➢ 0.22 km²
- Minor influence of topography: West-facing hillside at 1200m (±35m)
 Heterogenous coniferous forest with heights of up to 35 m

Willie - Con

Data

- 16 SnoMoS
- 8 UAV-based LiDAR Surveys (905 nm; Point density approx. 250 P/m²)
- 4 x 50 m transects x 9 manual Snow Surveys

N. S. MARA

LiDAR System

Machine Learning and LiDAR Snowheight Maps from UAVs Reveal Clusters of Snow Variability in a Sub-Alpine Forest

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹ University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation conte

LiDAR Data and Mission:

- Altitude: 80 m above ground
- Flight speed: 19 m/s.
- 37 km in 33 minutes
- 40% Battery charge remaining
- 16 m distance between flightlines.
- Average Point density:
- Overall: 250 P/m² [2x125 P/m²]
- **Ground Points**
 - Open: 223 P/m²
 - Forest: 45 P/m²

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹ ¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation contes

-12 (D 11 20)

SnoMoS

- Wind: 3 Cup wind anemometer
- Sensor: Shortwave radiation (IN), longwave radiation (out), humidity, air temperature and ultrasonic snow depth
 - Logger
- Time-Lapse Camera for gap filling

Pohl S., **Gravelmann** J., **Wawerla** J. & **Weiler** M. (2014): Potential of low-cost sensor network to understand the spatial and temporal dynamics of a mountain snow cover, Water Resour Res, 50, doi:10.1002/2013WR014594

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Methods

Machine Learning and LiDAR Snowheight Maps from UAVs Reveal Clusters of Snow Variability in a Sub-Alpine Forest

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

candidate Presentation contes

- iii) Use the kMeans Output to train a random forest model.
- iv) Predict cluster for the whole dataset using the trained random forest (including probabilities)

Unsupervised Classification of LiDAR HS Maps

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation conte

Get probabilities of sensor locations s belonging to the clusters c ws,c Determine the cluster's snow depth at the time t $HS_c(t)$: $HS_c(t) = HS_s(t) \cdot \frac{w_{s,c}}{\sum w_{s,c}}$

spatio-temporal snow variability

of

Cluster

Machine Learning and LiDAR Snowheight Maps from UAVs **Reveal Clusters of Snow Variability in a Sub-Alpine Forest**

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation conte

of spatio-temporal snow variability CHM and HS-map [m] Cluster 35 n

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹ ¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation conte

Model Calibration

Model Validation

Machine Learning and LiDAR Snowheight Maps from UAVs Reveal Clusters of Snow Variability in a Sub-Alpine Forest

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

			THE A				
Dataset	Referenz	n	NRMSE	NMEA	RMSE	MEA	R
LiDAR HS-maps	Snow Survey	1219	20%	16%	9 cm	7 cm	0.97
HS-maps (modelled)	Snow Survey	348	20%	15%	8 cm	6 cm	0.95
SWE-maps (modelled)	Snow Survey	149	26%	20%	35mm	26 mm	0.89
HS-maps (modelled)	LiDAR HS-maps	420960	27%	23%	10 cm	7 cm	0.89

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Joschka Geissler¹, Lars Rathmann¹,², Markus Weiler¹ University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & Phi candidate Presentation cont

Accumulation

- Overall accumulation reduced by 26% to 39% from open to forested clusters.
- High correlation between accumulation events (R: 0.81-0.83) and to canopy (R: 0.64 (CHM))
 Ablation
- Overall ablation rates are reduced in forested and open, exposed cluster by 28% - 36%
- Mid-winter and late-winter RoS show opposite relative ablation rates between the clusters (R:-0.91).

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹ University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Bern, CH

Freiburg, DE

Schauinsland, DE

Zürich, CH

Alptal, CH

Davos, CH

Davos, CH

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Data	Koutantou et al (2022)	
Number of Flights	8	
Aspect	South	
Slope	8°-25°	
Elevation	1700 m	
Forest Type	Coniferous	
Season	2020/2021	
Size	0.037 km ²	

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹ University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Data Koutantou et al (2022)	
Number of Flights 13	
Aspect North	15.7
Slope 20°-34°	1. A. P. M.
Elevation 1700 m	
Forest Type Coniferous	1
Season 2020/2021	ALL AL
Size 0.032 km ²	No.

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹ University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Data	Geissler et al (unpublished)		
Number of Flights	7		
Aspect	All (Summit)		
Slope	0°-14°		
Elevation	1200 m		
Forest Type	Coniferous		
Season	2021-2023		
Size	0.22 km ²		
Slope Elevation Forest Type Season Size	0°-14° 1200 m Coniferous 2021-2023 0.22 km ²		

Machine Learning and LiDAR Snowheight Maps from UAVs Reveal Clusters of Snow Variability in a Sub-Alpine Forest Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Canopy Height [m]

30 0

100 m

50

Data	Geissler et al (2023)	
Number of Flights	12	
Aspect	West	
Slope	7°-16°	* 15. A.
Elevation	1200 m	
Forest Type	Coniferous	The Alerthand
Season	2021-2023	A SHALL
Size	0.23 km ²	ういとあ
	10	2

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

A CONTRACTOR

States - -

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

candidate Presentation contes

Page 1/2

Broxton, P. D., Leeuwen, W. J., & Biederman, J. A. (2020). Forest cover and topography regulate the thin, ephemeral snowpacks of the semiarid Southwest United States. Ecohydrology, 13(4). <u>https://doi.org/10.1002/eco.2202</u>

Dharmadasa, V., Kinnard, C., & Baraër, M. (2022). An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar. Remote Sensing, 14(7), 1649. <u>https://doi.org/10.3390/rs14071649</u>

Geissler J., Rathmann L, Weiler M. Spatio-temporal Snow Variability in a Sub-Alpine Forest predicted by Machine Learning and UAV-based LiDAR Snow Depth Maps. ESS Open Archive . January 24, 2023. <u>https://doi.org/10.22541/essoar.167458059.97519903/v1</u>

Geissler, J., Rathmann, L., & Weiler, M. (2023). Spatio-temporal Snow Variability in the Sub-Alpine Alptal, Switzerland - UAV-based LiDAR Snow Depth Maps and Derived Products [Research Data]. <u>https://doi.org/10.6094/UNIFR/232647</u>

Harder, P., Pomeroy, J., & Helgason, W. D. (2020). Improving sub-canopy snow depth mapping with unmanned aerial vehicles: Lidar versus structure-frommotion techniques. The Cryosphere, 14(6), 1919–1935. <u>https://doi.org/10.5194/tc-14-1919-2020</u>

Jacobs J., Hunsaker A., Sullivan F, Palace M., & Cho E. (2020). Shallow snow depth mapping with unmanned aerial systems lidar observations: A case study in Durham, New Hampshire, United States. <u>https://doi.org/10.5194/tc-2020-37</u>

Koutantou, K., Mazzotti, G., Brunner, P., Webster, C., & Jonas, T. (2022). Exploring snow distribution dynamics in steep forested slopes with UAV-borne LiDAR. Cold Regions Science and Technology, 200(5), 103587. <u>https://doi.org/10.1016/j.coldregions.2022.103587</u>

Joschka Geissler¹, Lars Rathmann^{1,2}, Markus Weiler¹

All and a second

¹University of Freiburg, Germany, ²Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

Outstanding Student & PhD candidate Presentation conte

Page 2/2

Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., Lundquist, J. D., & Jonas, T. (2019). Revisiting Snow Cover Variability and Canopy Structure Within Forest Stands: Insights From Airborne Lidar Data. Water Resources Research, 55(7), 6198–6216. <u>https://doi.org/10.1029/2019WR024898</u>

Mazzotti, G., Webster, C., Quéno, L., Cluzet, B., & Jonas, T. (2022). Canopy structure, topography and weather are equally important drivers of small-scale snow cover dynamics in sub-alpine forests. Hydrology and Earth System Sciences Discussions, 2022, 1–32. <u>https://doi.org/10.5194/hess-2022-273</u>

Pflug, J. M., & Lundquist, J. D. (2020). Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California. Water Resources Research, 56(9). <u>https://doi.org/10.1029/2020WR027243</u>

Pohl S., Gravelmann J., Wawerla J. & Weiler M. (2014): Potential of low-cost sensor network to understand the spatial and temporal dynamics of a mountain snow cover, Water Resour Res, 50, doi:10.1002/2013WR014594

Stillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., and Bair, E. H. (2023). Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets, The Cryosphere, 17, 567–590, <u>https://doi.org/10.5194/tc-17-567-2023</u>

Winkler, M., Schellander, H., and Gruber, S.: Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model, Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, 2021.