SUPPLEMENTARY TO: INSENSITIVITY OF GLOBAL TEMPERATURE RESPONSE TO THE MAGNITUDE OF **VOLCANIC ERUPTIONS**

In EGU session "Understanding volcano-climate impacts and the stratospheric aerosol layer"

UiT The Arctic University of Norway

Using a linear operator to describe temperature fluctuations:

 $\Delta T(t) = \hat{L}[f_K(t)]
onumber \ \Delta T(t) = \phi * f_K(t) = \phi * \sum_k A_k \delta(t-t_k)$

The first equation show the linear relation between some forcing f(t) and the deterministic temperature fluctuation due to the forcing.

We wish to look further into the linearity assumption in relation to volcanoes over a large range of eruption magnitudes (total injected SO2).

Can we write up the temperature response to volcanic eruptions as a convolution between the forcing and some general shape function, here represented by the letter ϕ ?

The forcing is here consisting only of forcing due to episodic volcanoes, where *A* represent the amplitude of a given volcanic event arriving at time t_k .

$$egin{aligned} \Delta T(t) &= \phi * f_K(t) = \phi * \sum_k A_k \delta(t-t_k) \ && \ A_k \left\{ egin{aligned} &\stackrel{?}{=} g(M_k^{ ext{max}}) \ &\stackrel{?}{=} M_k^{ ext{max}} \end{array}, M = \left\{ egin{aligned} &\operatorname{SO}_2\left[\operatorname{Tg}
ight] \ &\operatorname{AOD}\left[1
ight] \ &\operatorname{AOD}\left[1
ight] \ &\operatorname{TOA}\left[\operatorname{W/m}^2
ight] \end{aligned}
ight. \end{aligned}
ight.$$

where $M_k^{
m max}$ is the peak magnitude of event k.

If so, what representation of the forcing should one use? Do we perhaps need a non-linear transformation ($g(\cdot)$) of the forcing to be able to get temperature from convolutions?

We consider three different sources to describe the forcing; total injected SO2 in Tg, the aerosol optical depth and forcing as top-of-the-atmosphere radiative forcing.

(Injected SO2 is used as model input to simulate the volcanoes, while both AOD and radiative forcing are output variables of the model.)

Temperature anomaly against injected SO2.

Short Name	Long Name
C2W	CESM2(WACCM6)
C2WN↑	CESM2(WACCM6), high latitude
C2C↑	CESM2(CAM6)
C1C	CESM1(CAM5)
Р	Pinatubo
P100	Pinatubo times 100
Т	Tambora

Temperature anomaly against injected SO2.

Short Name	Long Name
C2W	CESM2(WACCM6)
C2WN↑	CESM2(WACCM6), high latitude
C2C↑	CESM2(CAM6)
C1C	CESM1(CAM5)
Р	Pinatubo
P100	Pinatubo times 100
Т	Tambora

Aerosol optical depth versus injected SO2.

Short Name	Long Name
C2W	CESM2(WACCM6)
C2WN↑	CESM2(WACCM6), high latitude
C2C↑	CESM2(CAM6)
Ρ	Pinatubo
P100	Pinatubo times 100
Т	Tambora

Aerosol optical depth versus injected SO2.

Short Name	Long Name
C2W	CESM2(WACCM6)
C2WN↑	CESM2(WACCM6), high latitude
C2C↑	CESM2(CAM6)
Ρ	Pinatubo
P100	Pinatubo times 100
Т	Tambora

Temperature versus aerosol optical depth.

Short Name	Long Name
C2W	CESM2(WACCM6)
C2WN↑	CESM2(WACCM6), high latitude
Р	Pinatubo
P100	Pinatubo times 100
Т	Tambora

Temperature versus aerosol optical depth.

Short Name	Long Name
C2W	CESM2(WACCM6)
C2WN↑	CESM2(WACCM6), high latitude
Р	Pinatubo
P100	Pinatubo times 100
Т	Tambora

Radiative forcing versus injected SO2.

Short Name	Long Name
C2W	CESM2(WACCM6)
C1C	CESM1(CAM5)
Р	Pinatubo
P100	Pinatubo times 100

Temperature versus radiative forcing.

Short Name	Long Name
C2W	CESM2(WACCM6)
C1C	CESM1(CAM5)
Р	Pinatubo
P100	Pinatubo times 100

Scaled version of the two smaller eruption data points, such that the peak values coincide.

Short Name	Long Name
C2W Peaks*	CESM2(WACCM6), Peak values
C2W↓	CESM2(WACCM6), weak eruption
C2W—	CESM2(WACCM6), medium eruption
C2W↑	CESM2(WACCM6), strong eruption

LINKS

Go to html version.

Link and QR code to the conference abstract information:

