High-Precision Calculating the Normal Height as the Coordinate Line's Length
 Viktor Popadyev ${ }^{1}$ \& Samandar Rakhmonov ${ }^{2}$

${ }^{1}$ Central Research Institute of Geodesy, Aerial Photography and Cartography

In establishing a global Abstract
fInal choice of height system to represent height marks. In addition to proving the vantages of the normal heights system, it is necessary to to ediminionte to proving the "white
pots" within itself. In 2004 a more accurate way of calculating no he length of a coordinate line in a spheroroidal system was considered. In the mean lime, the papers by some researchers contaidal only methods of s" "practically accurate" maculation of the orthometric height, which is associated with increasing know is required to develop op methods of its hictur-precision calculation and explore the properties of various options for setting the corresponding curvilinear integral. An pepperties of various options for settling the corresponding curvilinear in for the neral. An
dental height as as segment of the coordinate line of the spheroidal system; the one obtained in 2004 , which contained inaccuracies, wa
corrected. The proposed method can be applied at an arbitrary distance from the corrected. The proposed method can be applied at an arbitrary distance from the
reference ellipsoid.

Introduction

Firstly, we must keep in mind, that the height systems were introduced only or the precision leveling processing, since all they are non-optimal for the heights comparison are

- behavior of heights on the earth's surface (1950-1970s) [4]
-behavior of heights inside the earth, see [1];
- behavior of heights at large and significant distances from the earth's surface (asymptotic properties) [2],
- behavior of heights on the level surfaces of reservoirs possibility of theoretically exact calculation
The orthometric system has the visible physical sense, but all their other 1. The impossibility
segment of a real field line from the acceoite calculation (as the length of a 2. The distribution of the real force of gravity along it is unknown.

3. The distribution of masses near and everywhere further is unknown (if it is known, then the problem becomes direct).
4. The location of the geoid is unknown (if known, there is no problem). 5. If the mass distribution is known, it is difficult to calculate volume 6. The orthometric he
and does not reflect the behavior of the field with height. "vertical length" 7. If all this is overcome, then even in this case, the normal height has a number of advantages over the orthometric one.
As for normal heights, they do not have a simple visible representation, but they have the following advantages:
alculation:
tint (Molodensky M. S. 1945) normal field line from an ellipsoid to a - as normals to ellipsoid (usual way)
as the spheroidal coordinate line length: [6], our work
5. Low requirements for accuracy of gravimetric data. 3. Normal heights characterize level surfaces of a real field better than orthometric ones (normal heights ar
Disadvantages of normal heights:
Disadvantages of normal heights:
6. Not constant on a level surface (reservoir), as dynamic.
7. Very different at a great distance when the normal field line is used (then we use the spheroidal coordinate line).

Problem Statement

In the literature, there are discrepancies about the direction in which the telluroid points should be plotted from the ellipsoid for the subsequent calelation of the segment of normal height. There are three options (see Fig.): corceline of the normal field back (initial Molodensky's definition), coordinate line of the spheroidal system (some publications), normal to the ellipsoid.

Theoretically, the normal gravity field can be successfully used as an orthogonal coordinate system, since its force lines and level surfaces can serve as natural coordinate lines and coordinate surfaces. However, a normal force line does not have two characteristics that would be constant at each of its points with a change in only the third value, as in a conventional
orthogonal coordinate system. The normal to the reference ellipsoid plays an important role in solving geometric problems of geodesy, but is of little use in physical matters. It is more convenient to use a curvilinear coordinate system associated with a family of ellipsoids confocal ($c=a \cdot e=$ const to the reference one with semiaxes a, b, especially since it contains closed expressions for the normal potential of gravity and all derivative elements. The method used so far for calculating the value of the normal height is based on the expansion of the normal gravity γ in a series using higher
derivatives with respect to the geodetic coordinates at the point on the surface of the reference ellipsoid [5] with normal gravity γ_{0}, the expansion erroo naturally increases with distance from the ellipsoid. This Yeremeyev's formula is often considered as the definition of the normal height H^{γ} while it is only working formula [3]

$$
H^{\gamma}=\frac{1}{\gamma^{m}} \int_{\left(W_{0}\right)}^{(W)} g d h, \quad \gamma^{m}=\frac{1}{H^{\gamma} \gamma} \int_{\left(U_{0}\right)}^{\left(U^{\prime}\right)} \gamma d H,
$$

where $\gamma^{m}=\gamma_{0}+\frac{H^{\gamma} \partial \gamma_{0}}{2} \frac{\left(H H^{\gamma}\right)^{2}}{\partial H} \frac{\partial^{2} \gamma_{0}}{\partial H^{2}}+\frac{\left(H^{\gamma}\right)^{3}}{24} \frac{\partial^{3} \gamma_{0}}{\partial H^{3}}+$

The normal height corresponds to the coordinate b or w in Molodensky's condition of the equality of the real $W_{0}-W^{\prime}$ and normal $U_{0}-U^{\prime}$ geopo tential numbers:

$$
\begin{equation*}
W-W_{0}=-\int g d h=\left.U\right|_{u ; b, w \leftrightarrow H^{v}}-U_{0}, \tag{2}
\end{equation*}
$$

where g is the real gravity, $d h$ is the measured elementary elevation, or

$$
\begin{array}{r}
-\int g d h=\frac{G M}{c} \operatorname{arccot} \frac{b}{c}+\frac{\omega^{2} a_{0}^{2}}{3 q_{0}}\left[\left(\frac{3 b^{2}}{2} c^{2}+\frac{1}{2}\right) \operatorname{arccot} \frac{b}{c}-\frac{3 b}{2} \frac{b}{c}\right] P_{2}(\sin u)+ \\
+\frac{\omega^{2} a^{2}}{3}\left[1-P_{2}(\sin u)\right]-\left(\frac{G M}{c} \operatorname{arccot} \frac{b_{0}}{c}+\frac{\omega^{2} a_{0}^{2}}{3}\right),(3)
\end{array}
$$

here $G M$ is geocentrical gravity constant, $c=a \cdot e$ is half of the focal disque, e being first eccentricity, ω is the angular velocity of the Earth's rotation, $q_{0}=\left(\frac{3 b^{2}}{2 c^{2}}+\frac{1}{2}\right) \operatorname{arccot} \frac{c}{b}-\frac{3 b}{2 c} \approx 0,5 \cdot 0,00015$.
For the first time, the question of the need to study and refine the method for calculating the normal height was raised by Milos Pick and M. I. Yorkina in 2004 [7]. In their joint publication, the normal height is refined with
respect to the gradient solution, taking into account the expression of the normal potential in the spheroidal system u, v, w (Niven's).
M. I. Yurkina in 2004 [6] gave a similar expression in the system u, L, b (Heiskanen-Moritz's), also indicating an explicit expression for the length of the segment of the coordinate line in the same system, however, the controt calculations were not performed, so inaccuracies remained unnoticed in the proposed formulas for the auxiliary quantities, resulting in a low ac curacy of the expression for the normal height H^{γ}.

Contact Information

Higher Geodesy department
${ }^{2}$ Moscow State University of Geodesy and Cartography (MIIGAiK)
${ }^{2}$ Moscow, Gorokhovsky per., 4
Email: ${ }^{1}$ azyas@mail.ru, ${ }^{2}$ rahmonov_samandar@inbox.ru

1 Solution

1.1 The first approximation

First of all, we need to determine the main part of the normal height $H_{2,3}^{\gamma}$ using the Yeremeyev formula (1) from two or three approximations, then ind a point with spheroidal coordinates u, b^{\prime} or u, w^{\prime} corresponding to the reduced latitude u due to ignorance of the exact spatial position of a point on the earth's surface will not affect the result in height (this can always be refined by successive approximations), especially when using GNSS to determine leveling points, the problem disappears.
1.2 Refinement of the third spheroidal coordinates of the points on the telluroid
An inaccurate value of b^{\prime} or w^{\prime} will result in a mismatch between the left and right sides of the Molodensky's condition (2) or (3). Assuming that the eft side is given, the right side can be expanded in a neighborhood of b^{\prime} or w^{\prime} and search for a small correction Δb or Δw in a linear approximation:

$$
W-W_{0}=-\int g d h=\left[\left.U\right|_{u ; b, w^{\prime} \Leftrightarrow H_{2,3}^{\gamma}}+\frac{\partial U}{\partial b} \Delta b+\ldots\right]-U_{0},
$$

where

$$
\Delta b=\frac{\left[W-W_{0}\right]-\left[\left.U\right|_{u ; b^{\prime}, w^{\prime} \Leftrightarrow H_{2,3}^{\gamma}}-U_{0}\right]}{\frac{\partial U}{\partial b}} .
$$

Differentiating the right side of the Molodensky condition (3) with respect to the variable b or w, we get the derivative of $\frac{\partial U}{\partial b}$
$\frac{\partial U}{\partial b}=-\frac{G M}{b^{\prime 2}+c^{2}}+\frac{\omega^{2} a^{2}}{3 q_{0}}\left[3 \frac{b^{\prime}}{c^{2}} \operatorname{arccot} \frac{b^{\prime}}{c}-\left(\frac{3 b^{\prime 2}}{2}+\frac{1}{2}\right) \frac{\frac{1}{c}}{1+\frac{b^{2}}{c^{2}}}-\frac{3}{2 c}\right]+\frac{2}{3} \omega^{2} b^{\prime}[1$
which must be calculated at the point $u ; b^{\prime}, w^{\prime} \Leftrightarrow H_{2.3}^{\gamma}$. This expression of the derivative is more precise than that of M. I. Yurkina [6], where there as an excessive expansion of the arc.tangent.
As a result, we have a point on the telluroid with the third coordinate

$$
b=b^{\prime}+\Delta b, \quad w=w^{\prime}+\Delta w
$$

In this step, the precision control is performed, was obtained here up to 10^{-4} in the potential units $\left[\mathrm{m}^{2} / \mathrm{s}^{2}\right]$.

1.3 Evaluation of the curvilinear integral

To calculate the normal height as the length of the coordinate line w in the form of a curvilinear integral of the 1st kind

$$
H^{\gamma}=\int_{w_{0}}^{w^{\prime}} c \sqrt{\cosh w-\cos ^{2} u} d w,
$$

where $c \sqrt{\cosh w-\cos ^{2} u}=h_{w}$ is the Lame coefficient of the third curvilinear coordinate w, expand the integrand $\sqrt{\cosh ^{2} w-\cos ^{2} u \text { into the Cay- }}$ Jor series in the vicinity of the point with coordinates u, w_{0} on the reference ellipsoid.

$$
\begin{aligned}
H^{\gamma}= & =c\left[\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}-\frac{\cosh ^{2} w_{0}}{\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}}-\frac{\cosh ^{2} w_{0} \cos ^{2} u}{2\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}\right)^{3}}-\right.\right. \\
& \left.-\frac{\cosh ^{4} w_{0} \cos ^{2} u}{2\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}\right)^{3}}-\frac{\cosh ^{2} w_{0} \cos ^{2} u\left(4 \cosh ^{2} w_{0}+\cos ^{2} u\right)}{8\left(\cosh ^{2}-\cos ^{2} u\right)^{7}}\right) \int_{w_{0}}^{w^{\prime}} 1 d w+
\end{aligned}
$$

$\left(\frac{\cosh w_{0}}{\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}}+\frac{\cosh ^{2} w_{0} \cos ^{2} u}{\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}\right)^{3}}+\frac{3}{2} \frac{\cosh ^{3} w_{0} \cos ^{2} u}{\left(\sqrt{\cosh ^{2}-\cos ^{2} u}\right)^{3}}+\right.$
$\left.\left.+\frac{1}{2}\left(\cosh ^{3} w_{0} \cos ^{2} u\right) \cosh ^{2} w_{0}-\cos ^{2} u\right)^{7}\right) \int_{w_{0}}^{w^{\prime}} \cosh w d w+$
$\left(-\frac{\cos ^{2} u}{2 \sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}}-\frac{3}{2} \frac{\cosh ^{2} w_{0} \cos ^{2} u}{\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}\right)^{5}}\right.$
$\left.-\frac{6 \cosh ^{2} w_{0} \cos ^{2} u\left(4 \cosh ^{2} w_{0}+\cos ^{2} u\right)}{\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}\right)^{7}}\right) \int_{w_{0}}^{w^{\prime}} \cosh ^{2} w d w+$
$\left(\frac{1}{2} \frac{\cosh ^{2} w_{0} \cos ^{2} u}{\left(\sqrt{\cosh ^{2}-\cos ^{2} u}\right)^{3}}+\frac{\cosh ^{2} w_{0} \cos ^{2} u\left(4 \cosh ^{2} w_{0}+\cos ^{2} u\right)}{\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}\right)^{7}}\right) \int_{w_{0}^{\prime}}^{w^{\prime}} \cosh ^{3} w d w$

$$
\left.-\frac{\cos ^{2} u}{8} \frac{4 \cosh ^{2} w_{0}+\cos ^{2} u}{\left(\sqrt{\cosh ^{2} w_{0}-\cos ^{2} u}\right)} \int_{w_{0}}^{w^{\prime}} \cosh ^{4} w d w+\ldots\right]
$$

where there are table integral

$$
\begin{gathered}
\int \cosh ^{2} w d w=\frac{\sinh 2 w}{2}+\frac{1}{2} w, \\
\int \cosh ^{3} w d w=\frac{\sinh h^{2} w}{3}+\sinh w,
\end{gathered}
$$

$$
\int \cosh ^{4} w d w=\frac{\sinh 4 w}{32}+\frac{\sinh 2 w}{4}+\frac{3}{8} w,
$$

Here was the inaccuracy in the formula of M. I. Yurkina [6], expressed in Conclusions coordinate line of the spheroidal system is shown.

References
[1] Popadyev V.V. (2019) On the Advantage of Normal Heights. In: International Association of Geodesy Symposiac. Springer, https://link.springer.com/chapter/10.1007/1345 201974
[2] Popadyev, V. and Rakhmonov, S.: Some remarks about orthometric and normal height systems, EGU General Assamblt 202, Vienna, Austria, 2327 May 2022,
https://doi.org/10.5194/egusphere-egu22-10246, 2022.
[3] Jeremejew W. F. Theorie der orthometrischen, dynamischen ind Normalhöhen. In: Sowjetische Arbeiten aus höherer Geodäsie u. Geophysik: Teil 2. Ausgewählte Übersetzungen fremdsprachlicher Fachliteratur. Geodätisches Institut d. Technischen Hochschule, 1958. Please help us find this translation, in our studies we use the original
[4] Eremeev V. F., Jurkina M. I. Theories der Höhen in Gravitationsfed der Ede. Arbeiten aus dem Vermessungs- and Kartenwesen der
Deutschen Demokratischen Republic, Geodätischer Dienst, Leipzig, 1974, Band 32, Teil 1, 2, 282 S.
[5] Yurkina M., Pick M. To Pizzetti's theory of the level ellipsoid. Stud. Geophys. Geod., 46 (2002), p. 435-454.
[6] Yurkina M. I. To refine the height to fractions of a millimeter [In Russian]. Geodesist, 2, 2004, p. 19-20.
[7] Jurkina M. I., Pick M. Nâvrh na zpřesnění výpočtu normáních vyšek. Vojenský geografický obzor: Roč.04/̌̌. 1 (2004), s. 12-25.

Acknowledgements
We are very grateful to prof. Tatyana Lambeva (UACEG, Sofia, Bulgaria), who helped us organize this report.

